7 research outputs found

    Mapping of a N-terminal α-helix domain required for human PINK1 stabilization, Serine228 autophosphorylation and activation in cells.

    Get PDF
    Autosomal recessive mutations in the PINK1 gene are causal for Parkinson's disease (PD). PINK1 encodes a mitochondrial localized protein kinase that is a master-regulator of mitochondrial quality control pathways. Structural studies to date have elaborated the mechanism of how mutations located within the kinase domain disrupt PINK1 function; however, the molecular mechanism of PINK1 mutations located upstream and downstream of the kinase domain is unknown. We have employed mutagenesis studies to define the minimal region of human PINK1 required for optimal ubiquitin phosphorylation, beginning at residue Ile111. Inspection of the AlphaFold human PINK1 structure model predicts a conserved N-terminal α-helical extension (NTE) domain forming an intramolecular interaction with the C-terminal extension (CTE), which we corroborate using hydrogen/deuterium exchange mass spectrometry of recombinant insect PINK1 protein. Cell-based analysis of human PINK1 reveals that PD-associated mutations (e.g. Q126P), located within the NTE : CTE interface, markedly inhibit stabilization of PINK1; autophosphorylation at Serine228 (Ser228) and Ubiquitin Serine65 (Ser65) phosphorylation. Furthermore, we provide evidence that NTE and CTE domain mutants disrupt PINK1 stabilization at the mitochondrial Translocase of outer membrane complex. The clinical relevance of our findings is supported by the demonstration of defective stabilization and activation of endogenous PINK1 in human fibroblasts of a patient with early-onset PD due to homozygous PINK1 Q126P mutations. Overall, we define a functional role of the NTE : CTE interface towards PINK1 stabilization and activation and show that loss of NTE : CTE interactions is a major mechanism of PINK1-associated mutations linked to PD

    SGTA interacts with the proteasomal ubiquitin receptor Rpn13 via a carboxylate clamp mechanism

    Get PDF
    YesThe fate of secretory and membrane proteins that mislocalize to the cytosol is decided by a collaboration between cochaperone SGTA (small, glutamine-rich, tetratricopeptide repeat protein alpha) and the BAG6 complex, whose operation relies on multiple transient and subtly discriminated interactions with diverse binding partners. These include chaperones, membrane-targeting proteins and ubiquitination enzymes. Recently a direct interaction was discovered between SGTA and the proteasome, mediated by the intrinsic proteasomal ubiquitin receptor Rpn13. Here, we structurally and biophysically characterize this binding and identify a region of the Rpn13 C-terminal domain that is necessary and sufficient to facilitate it. We show that the contact occurs through a carboxylate clamp-mediated molecular recognition event with the TPR domain of SGTA, and provide evidence that the interaction can mediate the association of Rpn13 and SGTA in a cellular context.RLI was supported by MRC New Investigator Research Grant: G0900936. RLI and SH are funded by BBSRC grants: BB/L006952/1 and BB/L006510/1 respectively. RLI is funded by BBSRC grant: BB/N006267/1. AT is funded by BBSRC grant: BB/J014567/1. ILT was the recipient of a Wellcome Trust Vacation Scholarship 2015. NMR experiments were performed at the Centre for Biomolecular Spectroscopy, King’s College London, established with a Capital Award from the Wellcome Trus

    A mechanism for induction of a hypoxic response by vaccinia virus.

    No full text
    Viruses have evolved sophisticated strategies to exploit host cell function for their benefit. Here we show that under physiologically normal oxygen levels (normoxia) vaccinia virus (VACV) infection leads to a rapid stabilization of hypoxia-inducible factor (HIF)-1α, its translocation into the nucleus and the activation of HIF-responsive genes, such as vascular endothelial growth factor (VEGF), glucose transporter-1, and pyruvate dehydrogenase kinase-1. HIF-1α stabilization is mediated by VACV protein C16 that binds the human oxygen sensing enzyme prolyl-hydroxylase domain containing protein (PHD)2 and thereby inhibits PHD2-dependent hydroxylation of HIF-1α. The binding between C16 and PHD2 is direct and specific, and ectopic expression of C16 alone induces transcription of HIF-1α responsive genes. Conversely, a VACV strain lacking the gene for C16, C16L, is unable to induce HIF-1α stabilization. Interestingly, the N-terminal region of C16 is predicted to have a PHD2-like structural fold but lacks the catalytic active site residues of PHDs. The induction of a hypoxic response by VACV is reminiscent of the biochemical consequences of solid tumor formation, and illustrates a poxvirus strategy for manipulation of cellular gene expression and biochemistry

    Structure and Interactions of the TPR Domain of Sgt2 with Yeast Chaperones and Ybr137wp.

    No full text
    Small glutamine-rich tetratricopeptide repeat-containing protein 2 (Sgt2) is a multi-module co-chaperone involved in several protein quality control pathways. The TPR domain of Sgt2 and several other proteins, including SGTA, Hop, and CHIP, is a highly conserved motif known to form transient complexes with molecular chaperones such as Hsp70 and Hsp90. In this work, we present the first high resolution crystal structures of Sgt2_TPR alone and in complex with a C-terminal peptide PTVEEVD from heat shock protein, Ssa1. Using nuclear magnetic resonance spectroscopy and isothermal titration calorimetry, we demonstrate that Sgt2_TPR interacts with peptides corresponding to the C-termini of Ssa1, Hsc82, and Ybr137wp with similar binding modes and affinities

    A mechanism for induction of a hypoxic response by vaccinia virus.

    No full text
    Viruses have evolved sophisticated strategies to exploit host cell function for their benefit. Here we show that under physiologically normal oxygen levels (normoxia) vaccinia virus (VACV) infection leads to a rapid stabilization of hypoxia-inducible factor (HIF)-1α, its translocation into the nucleus and the activation of HIF-responsive genes, such as vascular endothelial growth factor (VEGF), glucose transporter-1, and pyruvate dehydrogenase kinase-1. HIF-1α stabilization is mediated by VACV protein C16 that binds the human oxygen sensing enzyme prolyl-hydroxylase domain containing protein (PHD)2 and thereby inhibits PHD2-dependent hydroxylation of HIF-1α. The binding between C16 and PHD2 is direct and specific, and ectopic expression of C16 alone induces transcription of HIF-1α responsive genes. Conversely, a VACV strain lacking the gene for C16, C16L, is unable to induce HIF-1α stabilization. Interestingly, the N-terminal region of C16 is predicted to have a PHD2-like structural fold but lacks the catalytic active site residues of PHDs. The induction of a hypoxic response by VACV is reminiscent of the biochemical consequences of solid tumor formation, and illustrates a poxvirus strategy for manipulation of cellular gene expression and biochemistry

    Mice lacking WRB reveal differential biogenesis requirements of tail-anchored proteins in vivo

    Get PDF
    Tail-anchored (TA) proteins are post-translationally inserted into membranes. The TRC40 pathway targets TA proteins to the endoplasmic reticulum via a receptor comprised of WRB and CAML. TRC40 pathway clients have been identified using in vitro assays, however, the relevance of the TRC40 pathway in vivo remains unknown. We followed the fate of TA proteins in two tissue-specific WRB knockout mouse models and found that their dependence on the TRC40 pathway in vitro did not predict their reaction to receptor depletion in vivo. The SNARE syntaxin 5 (Stx5) was extremely sensitive to disruption of the TRC40 pathway. Screening yeast TA proteins with mammalian homologues, we show that the particular sensitivity of Stx5 is conserved, possibly due to aggregation propensity of its cytoplasmic domain. We establish that Stx5 is an autophagy target that is inefficiently membranetargeted by alternative pathways. Our results highlight an intimate relationship between the TRC40 pathway and cellular proteostasis.peerReviewe

    The Ways of Tails: the GET Pathway and more

    No full text
    corecore