87 research outputs found
Generic and disease-specific health related quality of life in non-cirrhotic, cirrhotic and transplanted liver patients: a cross-sectional study
BACKGROUND: Studies on Health Related Quality of Life (HRQoL) of chronic liver patients were performed in clinical populations. These studies included various disease stages but small variations in aetiology and no transplanted patients. We performed a large HRQoL study in non-cirrhotic, cirrhotic and transplanted liver patients with sufficient variety in aetiology. We compared the generic HRQoL and fatigue between liver patients and healthy controls and compared the disease-specific and generic HRQoL and fatigue between non-cirrhotic, cirrhotic and transplanted liver patients, corrected for aetiology. METHODS: Members of the Dutch liver patient association received the Short Form-36, the Liver Disease Symptom Index and the Multidimensional Fatigue Index-20. Based on reported clinical characteristics we classified respondents (n = 1175) as non-cirrhotic, compensated cirrhotic, decompensated cirrhotic or transplants. We used linear, ordinal and logistic regression to compare the HRQoL between groups. RESULTS: All liver patients showed a significantly worse generic HRQoL and fatigue than healthy controls. Decompensated cirrhotic patients showed a significantly worse disease-specific and generic HRQoL and fatigue than non-cirrhotic patients, while HRQoL differences between non-cirrhotic and compensated cirrhotic patients were predominantly insignificant. Transplanted patients showed a better generic HRQoL, less fatigue and lower probabilities of severe symptoms than non-cirrhotic patients, but almost equal probabilities of symptom hindrance. CONCLUSIONS: HRQoL in chronic liver patients depends on disease stage and transplant history. Non-cirrhotic and compensated cirrhotic patients have a similar HRQoL. Decompensated patients show the worst HRQoL, while transplanted patients show a significantly better HRQoL than cirrhotic and non-cirrhotic patients
The Influence of Temperature on Coumarin 153 Fluorescence Kinetics
The influence of temperature varied in the range 183 K–323 K on the fluorescence quantum yield, fluorescence lifetime, absorption and emission transition moments and non-radiative deactivation rate was determined for the well known and largely used dye Coumarin 153, dissolved in 1-chloropropane. The Kennard-Stepanov relation connecting the absorption and emission spectra was used to check for the presence of more than one absorbing/emitting species and to investigate whether intramolecular vibrational redistribution completes in the C153 excited S1 state before the emission takes place. The emission spectrum corresponding to S1→S0 transition, was fitted at each temperature to the model function including the information on the dye vibrational modes coupling. In this way the displacement in equilibrium distance for the most active vibrational mode was determined for C153 in S1 and in S0. Using the temperature dependence of the fluorescence decay time and quantum yield, the non-radiative deactivation rate was determined. Its temperature dependence was compared to that calculated using the theoretical model with the most active vibrational mode displacement values taken from steady-state spectra analysis. The somewhat surprising dependence of the fluorescence decay time and quantum yield on temperature was related to non-trivial coupling between low-frequency vibrational modes of C153 in the excited and ground states
Addressing the migration of health professionals: the role of working conditions and educational placements
This article provides a brief overview of the global health-worker shortage, which could undermine the Millennium Development Goal to halt and begin to reverse the spread of HIV/AIDS. The current situation suggests that long-term solutions to shortages can only be found by addressing the problem from a global perspective; that is, to eliminate shortages through substantial investments in training and retaining health workers in developed and developing countries, and not through policies that do not work towards solving this underlying problem, such as ones that restrict migration
Bradyrhizobium elkanii nod regulon: insights through genomic analysis
Abstract A successful symbiotic relationship between soybean [Glycine max (L.) Merr.] and Bradyrhizobium species requires expression of the bacterial structural nod genes that encode for the synthesis of lipochitooligosaccharide nodulation signal molecules, known as Nod factors (NFs). Bradyrhizobium diazoefficiens USDA 110 possesses a wide nodulation gene repertoire that allows NF assembly and modification, with transcription of the nodYABCSUIJnolMNOnodZ operon depending upon specific activators, i.e., products of regulatory nod genes that are responsive to signaling molecules such as flavonoid compounds exuded by host plant roots. Central to this regulatory circuit of nod gene expression are NodD proteins, members of the LysR-type regulator family. In this study, publicly available Bradyrhizobium elkanii sequenced genomes were compared with the closely related B. diazoefficiens USDA 110 reference genome to determine the similarities between those genomes, especially with regards to the nod operon and nod regulon. Bioinformatics analyses revealed a correlation between functional mechanisms and key elements that play an essential role in the regulation of nod gene expression. These analyses also revealed new genomic features that had not been clearly explored before, some of which were unique for some B. elkanii genomes
Geometry and field theory in multi-fractional spacetime
We construct a theory of fields living on continuous geometries with
fractional Hausdorff and spectral dimensions, focussing on a flat background
analogous to Minkowski spacetime. After reviewing the properties of fractional
spaces with fixed dimension, presented in a companion paper, we generalize to a
multi-fractional scenario inspired by multi-fractal geometry, where the
dimension changes with the scale. This is related to the renormalization group
properties of fractional field theories, illustrated by the example of a scalar
field. Depending on the symmetries of the Lagrangian, one can define two
models. In one of them, the effective dimension flows from 2 in the ultraviolet
(UV) and geometry constrains the infrared limit to be four-dimensional. At the
UV critical value, the model is rendered power-counting renormalizable.
However, this is not the most fundamental regime. Compelling arguments of
fractal geometry require an extension of the fractional action measure to
complex order. In doing so, we obtain a hierarchy of scales characterizing
different geometric regimes. At very small scales, discrete symmetries emerge
and the notion of a continuous spacetime begins to blur, until one reaches a
fundamental scale and an ultra-microscopic fractal structure. This fine
hierarchy of geometries has implications for non-commutative theories and
discrete quantum gravity. In the latter case, the present model can be viewed
as a top-down realization of a quantum-discrete to classical-continuum
transition.Comment: 1+82 pages, 1 figure, 2 tables. v2-3: discussions clarified and
improved (especially section 4.5), typos corrected, references added; v4:
further typos correcte
Recommended from our members
Model-free test of local-density mean-field behavior in electric double layers
We derive a self-similarity criterion that must hold if a planar electric double layer (EDL) can be captured by a local-density approximation (LDA), without specifying any specific LDA. Our procedure generates a similarity coordinate from EDL profiles (measured or computed), and all LDA EDL profiles for a given electrolyte must collapse onto a master curve when plotted against this similarity coordinate. Noncollapsing profiles imply the inability of any LDA theory to capture EDLs in that electrolyte. We demonstrate our approach with molecular simulations, which reveal dilute electrolytes to collapse onto a single curve, and semidilute ions to collapse onto curves specific to each electrolyte, except where size-induced correlations arise. © 2013 American Physical Society
- …