12 research outputs found

    Breed and adaptive response modulate bovine peripheral blood cells’ transcriptome

    Get PDF
    Background: Adaptive response includes a variety of physiological modifications to face changes in external or internal conditions and adapt to a new situation. The acute phase proteins (APPs) are reactants synthesized against environmental stimuli like stress, infection, inflammation. Methods: To delineate the differences in molecular constituents of adaptive response to the environment we performed the whole-blood transcriptome analysis in Italian Holstein (IH) and Italian Simmental (IS) breeds. For this, 663 IH and IS cows from six commercial farms were clustered according to the blood level of APPs. Ten extreme individuals (five APP+ and APP- variants) from each farm were selected for the RNA-seq using the Illumina sequencing technology. Differentially expressed (DE) genes were analyzed using dynamic impact approach (DIA) and DAVID annotation clustering. Milk production data were statistically elaborated to assess the association of APP+ and APP- gene expression patterns with variations in milk parameters. Results: The overall de novo assembly of cDNA sequence data generated 13,665 genes expressed in bovine blood cells. Comparative genomic analysis revealed 1,152 DE genes in the comparison of all APP+ vs. all APP- variants; 531 and 217 DE genes specific for IH and IS comparison respectively. In all comparisons overexpressed genes were more represented than underexpressed ones. DAVID analysis revealed 369 DE genes across breeds, 173 and 73 DE genes in IH and IS comparison respectively. Among the most impacted pathways for both breeds were vitamin B6 metabolism, folate biosynthesis, nitrogen metabolism and linoleic acid metabolism. Conclusions: Both DIA and DAVID approaches produced a high number of significantly impacted genes and pathways with a narrow connection to adaptive response in cows with high level of blood APPs. A similar variation in gene expression and impacted pathways between APP+ and APP- variants was found between two studied breeds. Such similarity was also confirmed by annotation clustering of the DE genes. However, IH breed showed higher and more differentiated impacts compared to IS breed and such particular features in the IH adaptive response could be explained by its higher metabolic activity. Variations of milk production data were significantly associated with APP+ and APP- gene expression patterns

    Optimizing Exogenous Surfactant as a Pulmonary Delivery Vehicle for Chicken Cathelicidin-2

    Get PDF
    The rising incidence of antibiotic-resistant lung infections has instigated a much-needed search for new therapeutic strategies. One proposed strategy is the use of exogenous surfactants to deliver antimicrobial peptides (AMPs), like CATH-2, to infected regions of the lung. CATH-2 can kill bacteria through a diverse range of antibacterial pathways and exogenous surfactant can improve pulmonary drug distribution. Unfortunately, mixing AMPs with commercially available exogenous surfactants has been shown to negatively impact their antimicrobial function. It was hypothesized that the phosphatidylglycerol component of surfactant was inhibiting AMP function and that an exogenous surfactant, with a reduced phosphatidylglycerol composition would increase peptide mediated killing at a distal site. To better understand how surfactant lipids interacted with CATH-2 and affected its function, isothermal titration calorimetry and solid-state nuclear magnetic resonance spectroscopy as well as bacterial killing curves against Pseudomonas aeruginosa were utilized. Additionally, the wet bridge transfer system was used to evaluate surfactant spreading and peptide transport. Phosphatidylglycerol was the only surfactant lipid to significantly inhibit CATH-2 function, showing a stronger electrostatic interaction with the peptide than other lipids. Although diluting the phosphatidylglycerol content in an existing surfactant, through the addition of other lipids, significantly improved peptide function and distal killing, it also reduced surfactant spreading. A synthetic phosphatidylglycerol-free surfactant however, was shown to further improve CATH-2 delivery and function at a remote site. Based on these in vitro experiments synthetic phosphatidylglycerol-free surfactants seem optimal for delivering AMPs to the lung
    corecore