64 research outputs found

    Deletion of Forkhead Box M1 Transcription Factor from Respiratory Epithelial Cells Inhibits Pulmonary Tumorigenesis

    Get PDF
    The Forkhead Box m1 (Foxm1) protein is induced in a majority of human non-small cell lung cancers and its expression is associated with poor prognosis. However, specific requirements for the Foxm1 in each cell type of the cancer lesion remain unknown. The present study provides the first genetic evidence that the Foxm1 expression in respiratory epithelial cells is essential for lung tumorigenesis. Using transgenic mice, we demonstrated that conditional deletion of Foxm1 from lung epithelial cells (epFoxm1−/− mice) prior to tumor initiation caused a striking reduction in the number and size of lung tumors, induced by either urethane or 3-methylcholanthrene (MCA)/butylated hydroxytoluene (BHT). Decreased lung tumorigenesis in epFoxm1−/− mice was associated with diminished proliferation of tumor cells and reduced expression of Topoisomerase-2α (TOPO-2α), a critical regulator of tumor cell proliferation. Depletion of Foxm1 mRNA in cultured lung adenocarcinoma cells significantly decreased TOPO-2α mRNA and protein levels. Moreover, Foxm1 directly bound to and induced transcription of the mouse TOPO-2α promoter region, indicating that TOPO-2α is a direct target of Foxm1 in lung tumor cells. Finally, we demonstrated that a conditional deletion of Foxm1 in pre-existing lung tumors dramatically reduced tumor growth in the lung. Expression of Foxm1 in respiratory epithelial cells is critical for lung cancer formation and TOPO-2α expression in vivo, suggesting that Foxm1 is a promising target for anti-tumor therapy

    Cranial Pathologies in a Specimen of Pachycephalosaurus

    Get PDF
    . The specimen features two large oval depressions on the dorsal surface, accompanied by numerous circular pits on the margin and inner surface of the larger depressions.In order to identify the origin of these structures, computed tomography (CT) data and morphological characteristics of the specimen are analyzed and compared with similar osteological structures in fossil and extant archosaurs caused by taphonomic processes, non-pathologic bone resorption, and traumatic infection/inflammatory origins. The results of these analyses suggest that the structures are pathologic lesions likely resulting from a traumatic injury and followed by secondary infection at the site.The presence of lesions on a frontoparietal dome, and the exclusivity of their distribution along the dorsal dome surface, offers further insight into frontoparietal dome function and supports previously hypothesized agonistic behavior in pachycephalosaurids

    Community-based assessment of human rights in a complex humanitarian emergency: the Emergency Assistance Teams-Burma and Cyclone Nargis

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Cyclone Nargis hit Burma on May 2, 2008, killing over 138,000 and affecting at least 2.4 million people. The Burmese military junta, the State Peace and Development Council (SPDC), initially blocked international aid to storm victims, forcing community-based organizations such as the Emergency Assistance Teams-Burma (EAT) to fill the void, helping with cyclone relief and long-term reconstruction. Recognizing the need for independent monitoring of the human rights situation in cyclone-affected areas, particularly given censorship over storm relief coverage, EAT initiated such documentation efforts.</p> <p>Methods</p> <p>A human rights investigation was conducted to document selected human rights abuses that had initially been reported to volunteers providing relief services in cyclone affected areas. Using participatory research methods and qualitative, semi-structured interviews, EAT volunteers collected 103 testimonies from August 2008 to June 2009; 42 from relief workers and 61 from storm survivors.</p> <p>Results</p> <p>One year after the storm, basic necessities such as food, potable water, and shelter remained insufficient for many, a situation exacerbated by lack of support to help rebuild livelihoods and worsening household debt. This precluded many survivors from being able to access healthcare services, which were inadequate even before Cyclone Nargis. Aid efforts continued to be met with government restrictions and harassment, and relief workers continued to face threats and fear of arrest. Abuses, including land confiscation and misappropriation of aid, were reported during reconstruction, and tight government control over communication and information exchange continued.</p> <p>Conclusions</p> <p>Basic needs of many cyclone survivors in the Irrawaddy Delta remained unmet over a year following Cyclone Nargis. Official impediments to delivery of aid to storm survivors continued, including human rights abrogations experienced by civilians during reconstruction efforts. Such issues remain unaddressed in official assessments conducted in partnership with the SPDC. Private, community-based relief organizations like EAT are well positioned and able to independently assess human rights conditions in response to complex humanitarian emergencies such as Cyclone Nargis; efforts of this nature must be encouraged, particularly in settings where human rights abuses have been documented and censorship is widespread.</p

    Role of Interaction and Nucleoside Diphosphate Kinase B in Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Function by cAMP-Dependent Protein Kinase A

    Get PDF
    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia

    Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes

    Get PDF
    Zaire ebolavirus (ZEBOV), a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new therapeutics as well as provide potential insight into the trafficking and entry mechanism of other filoviruses

    ATP-binding cassette (ABC) transporters in normal and pathological lung

    Get PDF
    ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases

    Changes in plasma biomarkers following treatment with cabozantinib in metastatic castration-resistant prostate cancer: a post hoc analysis of an extension cohort of a phase II trial

    Full text link
    BACKGROUND: Cabozantinib is an orally available inhibitor of tyrosine kinases including VEGFR2 and c-MET. We performed a post hoc analysis to find associations between select plasma biomarkers and treatment response in patients (pts) with metastatic castration resistant prostate cancer (mCRPC) who received cabozantinib 100 mg daily as part of a phase 2 non-randomized expansion cohort (NCT00940225). METHODS: Plasma samples were collected at baseline, 6 weeks and at time of maximal response from 81 mCRPC pts with bone metastases, of which 33 also had measurable soft-tissue disease. Levels of 27 biomarkers were measured in duplicate using enzyme-linked immunosorbent assay. Spearman correlation coefficients were calculated for the association between biomarker levels or their change on treatment and either bone scan response (BSR) or soft tissue response according to RECIST. RESULTS: A BSR and RECIST response were seen in 66/81 pts (81 %) and 6/33 pts (18 %) respectively. No significant associations were found between any biomarker at any time point and either type of response. Plasma concentrations of VEGFA, FLT3L, c-MET, AXL, Gas6A, bone-specific alkaline phosphatase, interleukin-8 and the hypoxia markers CA9 and clusterin significantly increased during treatment with cabozantinib irrespective of response. The plasma concentrations of VEGFR2, Trap5b, Angiopoietin-2, TIMP-2 and TIE-2 significantly decreased during treatment with caboznatinib. CONCLUSIONS: Our data did not reveal plasma biomarkers associated with response to cabozantinib. The observed alterations in several biomarkers during treatment with cabozantinib may provide insights on the effects of cabozantinib on tumor cells and on tumor micro-environment and may help point to potential co-targeting approaches

    Aggression, anxiety and vocalizations in animals: GABA A and 5-HT anxiolytics

    Full text link
    A continuing challenge for preclinical research on anxiolytic drugs is to capture the affective dimension that characterizes anxiety and aggression, either in their adaptive forms or when they become of clinical concern. Experimental protocols for the preclinical study of anxiolytic drugs typically involve the suppression of conditioned or unconditioned social and exploratory behavior (e.g., punished drinking or social interactions) and demonstrate the reversal of this behavioral suppression by drugs acting on the benzodiazepine-GABA A complex. Less frequently, aversive events engender increases in conditioned or unconditioned behavior that are reversed by anxiolytic drugs (e.g., fear-potentiated startle). More recently, putative anxiolytics which target 5-HT receptor subtypes produced effects in these traditional protocols that often are not systematic and robust. We propose ethological studies of vocal expressions in rodents and primates during social confrontations, separation from social companions, or exposure to aversive environmental events as promising sources of information on the affective features of behavior. This approach focusses on vocal and other display behavior with clear functional validity and homology. Drugs with anxiolytic effects that act on the benzodiazepine-GABA A receptor complex and on 5-HT 1A receptors systematically and potently alter specific vocalizations in rodents and primates in a pharmacologically reversible manner; the specificity of these effects on vocalizations is evident due to the effectiveness of low doses that do not compromise other physiological and behavioral processes. Antagonists at the benzodiazepine receptor reverse the effects of full agonists on vocalizations, particularly when these occur in threatening, startling and distressing contexts. With the development of antagonists at 5-HT receptor subtypes, it can be anticipated that similar receptor-specificity can be established for the effects of 5-HT anxiolytics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46351/1/213_2005_Article_BF02245590.pd
    corecore