319 research outputs found

    Reaction rates and transport in neutron stars

    Full text link
    Understanding signals from neutron stars requires knowledge about the transport inside the star. We review the transport properties and the underlying reaction rates of dense hadronic and quark matter in the crust and the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes, references updated, overview graphic added in the introduction, improvements in Sec IV.A.

    Ligation of the Jugular Veins Does Not Result in Brain Inflammation or Demyelination in Mice

    Get PDF
    An alternative hypothesis has been proposed implicating chronic cerebrospinal venous insufficiency (CCSVI) as a potential cause of multiple sclerosis (MS). We aimed to evaluate the validity of this hypothesis in a controlled animal model. Animal experiments were approved by the institutional animal care committee. The jugular veins in SJL mice were ligated bilaterally (n = 20), and the mice were observed for up to six months after ligation. Sham-operated mice (n = 15) and mice induced with experimental autoimmune encephalomyelitis (n = 8) were used as negative and positive controls, respectively. The animals were evaluated using CT venography and 99mTc-exametazime to assess for structural and hemodynamic changes. Imaging was performed to evaluate for signs of blood-brain barrier (BBB) breakdown and neuroinflammation. Flow cytometry and histopathology were performed to assess inflammatory cell populations and demyelination. There were both structural changes (stenosis, collaterals) in the jugular venous drainage and hemodynamic disturbances in the brain on Tc99m-exametazime scintigraphy (p = 0.024). In the JVL mice, gadolinium MRI and immunofluorescence imaging for barrier molecules did not reveal evidence of BBB breakdown (p = 0.58). Myeloperoxidase, matrix metalloproteinase, and protease molecular imaging did not reveal signs of increased neuroinflammation (all p>0.05). Flow cytometry and histopathology also did not reveal increase in inflammatory cell infiltration or population shifts. No evidence of demyelination was found, and the mice remained without clinical signs. Despite the structural and hemodynamic changes, we did not identify changes in the BBB permeability, neuroinflammation, demyelination, or clinical signs in the JVL group compared to the sham group. Therefore, our murine model does not support CCSVI as a cause of demyelinating diseases such as multiple sclerosis

    Laser oscillation in a strongly coupled single quantum dot-nanocavity system

    Full text link
    Strong coupling of photons and materials in semiconductor nanocavity systems has been investigated because of its potentials in quantum information processing and related applications, and has been testbeds for cavity quantum electrodynamics (QED). Interesting phenomena such as coherent exchange of a single quantum between a single quantum dot and an optical cavity, called vacuum Rabi oscillation, and highly efficient cavity QED lasers have been reported thus far. The coexistence of vacuum Rabi oscillation and laser oscillation appears to be contradictory in nature, because the fragile reversible process may not survive in laser oscillation. However, recently, it has been theoretically predicted that the strong-coupling effect could be sustained in laser oscillation in properly designed semiconductor systems. Nevertheless, the experimental realization of this phenomenon has remained difficult since the first demonstration of the strong-coupling, because an extremely high cavity quality factor and strong light-matter coupling are both required for this purpose. Here, we demonstrate the onset of laser oscillation in the strong-coupling regime in a single quantum dot (SQD)-cavity system. A high-quality semiconductor optical nanocavity and strong SQD-field coupling enabled to the onset of lasing while maintaining the fragile coherent exchange of quanta between the SQD and the cavity. In addition to the interesting physical features, this device is seen as a prototype of an ultimate solid state light source with an SQD gain, which operates at ultra-low power, with expected applications in future nanophotonic integrated systems and monolithic quantum information devices.Comment: 12 pages, 4 figure

    Sensory Processing of Motor Inaccuracy Depends on Previously Performed Movement and on Subsequent Motor Corrections: A Study of the Saccadic System

    Get PDF
    When goal-directed movements are inaccurate, two responses are generated by the brain: a fast motor correction toward the target and an adaptive motor recalibration developing progressively across subsequent trials. For the saccadic system, there is a clear dissociation between the fast motor correction (corrective saccade production) and the adaptive motor recalibration (primary saccade modification). Error signals used to trigger corrective saccades and to induce adaptation are based on post-saccadic visual feedback. The goal of this study was to determine if similar or different error signals are involved in saccadic adaptation and in corrective saccade generation. Saccadic accuracy was experimentally altered by systematically displacing the visual target during motor execution. Post-saccadic error signals were studied by manipulating visual information in two ways. First, the duration of the displaced target after primary saccade termination was set at 15, 50, 100 or 800 ms in different adaptation sessions. Second, in some sessions, the displaced target was followed by a visual mask that interfered with visual processing. Because they rely on different mechanisms, the adaptation of reactive saccades and the adaptation of voluntary saccades were both evaluated. We found that saccadic adaptation and corrective saccade production were both affected by the manipulations of post-saccadic visual information, but in different ways. This first finding suggests that different types of error signal processing are involved in the induction of these two motor corrections. Interestingly, voluntary saccades required a longer duration of post-saccadic target presentation to reach the same amount of adaptation as reactive saccades. Finally, the visual mask interfered with the production of corrective saccades only during the voluntary saccades adaptation task. These last observations suggest that post-saccadic perception depends on the previously performed action and that the differences between saccade categories of motor correction and adaptation occur at an early level of visual processing

    A computational procedure for functional characterization of potential marker genes from molecular data: Alzheimer's as a case study

    Get PDF
    Abstract Background A molecular characterization of Alzheimer's Disease (AD) is the key to the identification of altered gene sets that lead to AD progression. We rely on the assumption that candidate marker genes for a given disease belong to specific pathogenic pathways, and we aim at unveiling those pathways stable across tissues, treatments and measurement systems. In this context, we analyzed three heterogeneous datasets, two microarray gene expression sets and one protein abundance set, applying a recently proposed feature selection method based on regularization. Results For each dataset we identified a signature that was successively evaluated both from the computational and functional characterization viewpoints, estimating the classification error and retrieving the most relevant biological knowledge from different repositories. Each signature includes genes already known to be related to AD and genes that are likely to be involved in the pathogenesis or in the disease progression. The integrated analysis revealed a meaningful overlap at the functional level. Conclusions The identification of three gene signatures showing a relevant overlap of pathways and ontologies, increases the likelihood of finding potential marker genes for AD.</p

    IL-17A Expression Is Localised to Both Mononuclear and Polymorphonuclear Synovial Cell Infiltrates

    Get PDF
    This study examines the expression of IL-17A-secreting cells within the inflamed synovium and the relationship to in vivo joint hypoxia measurements.IL-17A expression was quantified in synovial tissue (ST), serum and synovial fluid (SF) by immunohistochemistry and MSD-plex assays. IL-6 SF and serum levels were measured by MSD-plex assays. Dual immunofluorescence for IL-17A was quantified in ST CD15+ cells (neutrophils), Tryptase+ (mast cells) and CD4+ (T cells). Synovial tissue oxygen (tpO(2)) levels were measured under direct visualisation at arthroscopy. Synovial infiltration was assessed using immunohistochemistry for cell specific markers. Peripheral blood mononuclear and polymorphonuclear cells were isolated and exposed to normoxic or 3% hypoxic conditions. IL-17A and IL-6 were quantified as above in culture supernatants.IL-17A expression was localised to mononuclear and polymorphonuclear (PMN) cells in inflamed ST. Dual immunoflourescent staining co-localised IL-17A expression with CD15+ neutrophils Tryptase+ mast cells and CD4+T cells. % IL-17A positivity was highest on CD15+ neutrophils, followed by mast cells and then CD4+T-cells. The number of IL-17A-secreting PMN cells significantly correlated with sublining CD68 expression (r = 0.618, p<0.01). IL-17A SF levels correlated with IL-6 SF levels (r = 0.675, p<0.01). Patients categorized according to tp0(2)< or >20 mmHg, showed those with low tp0(2)<20 mmHg had significantly higher IL-17A+ mononuclear cells with no difference observed for PMNs. Exposure of mononuclear and polymorphonuclear cells to 3% hypoxia, significantly induced IL-6 in mononuclear cells, but had no effect on IL-17A expression in mononuclear and polymorphonuclear cells.This study demonstrates IL-17A expression is localised to several immune cell subtypes within the inflamed synovial tissue, further supporting the concept that IL-17A is a key mediator in inflammatory arthritis. The association of hypoxia with Il-17A expression appears to be indirect, probably through hypoxia-induced pro-inflammatory pathways and leukocyte influx within the joint microenvironment

    Astaxanthin vs placebo on arterial stiffness, oxidative stress and inflammation in renal transplant patients (Xanthin): a randomised controlled trial

    Get PDF
    Background: There is evidence that renal transplant recipients have accelerated atherosclerosis manifest by increased cardiovascular morbidity and mortality. The high incidence of atherosclerosis is, in part, related to increased arterial stiffness, vascular dysfunction, elevated oxidative stress and inflammation associated with immunosuppressive therapy. The dietary supplement astaxanthin has shown promise as an antioxidant and anti-inflammatory therapeutic agent in cardiovascular disease. The aim of this trial is to investigate the effects of astaxanthin supplementation on arterial stiffness, oxidative stress and inflammation in renal transplant patients

    Physiological Benefits of Being Small in a Changing World: Responses of Coho Salmon (Oncorhynchus kisutch) to an Acute Thermal Challenge and a Simulated Capture Event

    Get PDF
    Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20°C at 3°C h−1) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males (‘jacks’). Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7°C was size-specific, with jacks regaining resting levels of metabolism at 9.3±0.5 h post-exercise in comparison with 12.3±0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20±0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b∼1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater ‘oxygen debt’ that took longer to pay back at the size-independent peak metabolic rate of ∼6 mg min−1 kg−1. Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non-lethal fisheries interactions have the potential to select for small individuals within fish populations over time

    In Vivo Gene Knockdown in Rat Dorsal Root Ganglia Mediated by Self-Complementary Adeno-Associated Virus Serotype 5 Following Intrathecal Delivery

    Get PDF
    We report here in adult rat viral vector mediate-gene knockdown in the primary sensory neurons and the associated cellular and behavior consequences. Self-complementary adeno-associated virus serotype 5 (AAV5) was constructed to express green fluorescent protein (GFP) and a small interfering RNA (siRNA) targeting mammalian target of rapamycin (mTOR). The AAV vectors were injected via an intrathecal catheter. We observed profound GFP expression in lumbar DRG neurons beginning at 2-week post-injection. Of those neurons, over 85% were large to medium-diameter and co-labeled with NF200, a marker for myelinated fibers. Western blotting of mTOR revealed an 80% reduction in the lumbar DRGs (L4–L6) of rats treated with the active siRNA vectors compared to the control siRNA vector. Gene knockdown became apparent as early as 7-day post-injection and lasted for at least 5 weeks. Importantly, mTOR knockdown occurred in large (NF200) and small-diameter neurons (nociceptors). The viral administration induced an increase of Iba1 immunoreactivity in the DRGs, which was likely attributed to the expression of GFP but not siRNA. Rats with mTOR knockdown in DRG neurons showed normal general behavior and unaltered responses to noxious stimuli. In conclusion, intrathecal AAV5 is a highly efficient vehicle to deliver siRNA and generate gene knockdown in DRG neurons. This will be valuable for both basic research and clinic intervention of diseases involving primary sensory neurons
    corecore