595 research outputs found

    P2X receptors: epithelial ion channels and regulators of salt and water transport.

    Get PDF
    When the results from electrophysiological studies of renal epithelial cells are combined with data from in vivo tubule microperfusion experiments and immunohistochemical surveys of the nephron, the accumulated evidence suggests that ATP-gated ion channels, P2X receptors, play a specialized role in the regulation of ion and water movement across the renal tubule and are integral to electrolyte and fluid homeostasis. In this short review, we discuss the concept of P2X receptors as regulators of salt and water salvage pathways, as well as acknowledging their accepted role as ATP-gated ion channels

    Telecare motivational interviewing for diabetes patient education and support : a randomised controlled trial based in primary care comparing nurse and peer supporter delivery

    Get PDF
    Background: There is increasing interest in developing peer-led and 'expert patient'-type interventions, particularly to meet the support and informational needs of those with long term conditions, leading to improved clinical outcomes, and pressure relief on mainstream health services. There is also increasing interest in telephone support, due to its greater accessibility and potential availability than face to face provided support. The evidence base for peer telephone interventions is relatively weak, although such services are widely available as support lines provided by user groups and other charitable services. Methods/Design: In a 3-arm RCT, participants are allocated to either an intervention group with Telecare service provided by a Diabetes Specialist Nurse (DSN), an intervention group with service provided by a peer supporter (also living with diabetes), or a control group receiving routine care only. All supporters underwent a 2-day training in motivational interviewing, empowerment and active listening skills to provide telephone support over a period of up to 6 months to adults with poorly controlled type 2 diabetes who had been recommended a change in diabetes management (i.e. medication and/or lifestyle changes) by their general practitioner (GP). The primary outcome is self-efficacy; secondary outcomes include HbA1c, total and HDL cholesterol, blood pressure, body mass index, and adherence to treatment. 375 participants (125 in each arm) were sought from GP practices across West Midlands, to detect a difference in self-efficacy scores with an effect size of 0.35, 80% power, and 5% significance level. Adults living with type 2 diabetes, with an HbA1c > 8% and not taking insulin were initially eligible. A protocol change 10 months into the recruitment resulted in a change of eligibility by reducing HbA1c to > 7.4%. Several qualitative studies are being conducted alongside the main RCT to describe patient, telecare supporter and practice nurse experience of the trial. Discussion and implications of the research: With its focus on self-management and telephone peer support, the intervention being trialled has the potential to support improved self-efficacy and patient experience, improved clinical outcomes and a reduction in diabetes-related complications

    Infrared composition of the Large Magellanic Cloud

    Get PDF
    The evolution of galaxies and the history of star formation in the Universe are among the most important topics in today's astrophysics. Especially, the role of small, irregular galaxies in the star-formation history of the Universe is not yet clear. Using the data from the AKARI IRC survey of the Large Magellanic Cloud at 3.2, 7, 11, 15, and 24 {\mu}m wavelengths, i.e., at the mid- and near-infrared, we have constructed a multiwavelength catalog containing data from a cross-correlation with a number of other databases at different wavelengths. We present the separation of different classes of stars in the LMC in color-color, and color-magnitude, diagrams, and analyze their contribution to the total LMC flux, related to point sources at different infrared wavelengths

    Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study

    Get PDF
    BACKGROUND: Microbiological characterisation of co-infections and secondary infections in patients with COVID-19 is lacking, and antimicrobial use is high. We aimed to describe microbiologically confirmed co-infections and secondary infections, and antimicrobial use, in patients admitted to hospital with COVID-19. METHODS: The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study is an ongoing, prospective cohort study recruiting inpatients from 260 hospitals in England, Scotland, and Wales, conducted by the ISARIC Coronavirus Clinical Characterisation Consortium. Patients with a confirmed or clinician-defined high likelihood of SARS-CoV-2 infection were eligible for inclusion in the ISARIC WHO CCP-UK study. For this specific study, we excluded patients with a recorded negative SARS-CoV-2 test result and those without a recorded outcome at 28 days after admission. Demographic, clinical, laboratory, therapeutic, and outcome data were collected using a prespecified case report form. Organisms considered clinically insignificant were excluded. FINDINGS: We analysed data from 48 902 patients admitted to hospital between Feb 6 and June 8, 2020. The median patient age was 74 years (IQR 59–84) and 20 786 (42·6%) of 48 765 patients were female. Microbiological investigations were recorded for 8649 (17·7%) of 48 902 patients, with clinically significant COVID-19-related respiratory or bloodstream culture results recorded for 1107 patients. 762 (70·6%) of 1080 infections were secondary, occurring more than 2 days after hospital admission. Staphylococcus aureus and Haemophilus influenzae were the most common pathogens causing respiratory co-infections (diagnosed ≤2 days after admission), with Enterobacteriaceae and S aureus most common in secondary respiratory infections. Bloodstream infections were most frequently caused by Escherichia coli and S aureus. Among patients with available data, 13 390 (37·0%) of 36 145 had received antimicrobials in the community for this illness episode before hospital admission and 39 258 (85·2%) of 46 061 patients with inpatient antimicrobial data received one or more antimicrobials at some point during their admission (highest for patients in critical care). We identified frequent use of broad-spectrum agents and use of carbapenems rather than carbapenem-sparing alternatives. INTERPRETATION: In patients admitted to hospital with COVID-19, microbiologically confirmed bacterial infections are rare, and more likely to be secondary infections. Gram-negative organisms and S aureus are the predominant pathogens. The frequency and nature of antimicrobial use are concerning, but tractable targets for stewardship interventions exist. FUNDING: National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, UK Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, and NIHR HPRU in Respiratory Infections at Imperial College London

    A plague on five of your houses - statistical re-assessment of three pneumonic plague outbreaks that occurred in Suffolk, England, between 1906 and 1918

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plague is a re-emerging disease and its pneumonic form is a high priority bio-terrorist threat. Epidemiologists have previously analysed historical outbreaks of pneumonic plague to better understand the dynamics of infection, transmission and control. This study examines 3 relatively unknown outbreaks of pneumonic plague that occurred in Suffolk, England, during the first 2 decades of the twentieth century.</p> <p>Methods</p> <p>The Kolmogorov-Smirnov statistical test is used to compare the symptomatic period and the length of time between successive cases (i.e. the serial interval) with previously reported values. Consideration is also given to the case fatality ratio, the average number of secondary cases resulting from each primary case in the observed minor outbreaks (termed <it>R</it><sub><it>minor</it></sub>), and the proportion of individuals living within an affected household that succumb to pneumonic plague via the index case (i.e. the household secondary attack rate (SAR)).</p> <p>Results</p> <p>2 of the 14 cases survived giving a case fatality ratio of 86% (95% confidence interval (CI) = {57%, 98%}). For the 12 fatal cases, the average symptomatic period was 3.3 days (standard deviation (SD) = 1.2 days) and, for the 11 non index cases, the average serial interval was 5.8 days (SD = 2.0 days). <it>R</it><sub><it>minor </it></sub>was calculated to be 0.9 (SD = 1.0) and, in 2 households, the SAR was approximately 14% (95% CI = {0%, 58%}) and 20% (95% CI = {1%, 72%}), respectively.</p> <p>Conclusions</p> <p>The symptomatic period was approximately 1 day longer on average than in an earlier study but the serial interval was in close agreement with 2 previously reported values. 2 of the 3 outbreaks ended without explicit public health interventions; however, non-professional caregivers were particularly vulnerable - an important public health consideration for any future outbreak of pneumonic plague.</p

    Non-variant specific antibody responses to the C-terminal region of merozoite surface protein-1 of Plasmodium falciparum (PfMSP-119) in Iranians exposed to unstable malaria transmission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The C-terminal region of <it>Plasmodium falciparum </it>merozoite surface protein-1 (PfMSP-1<sub>19</sub>) is a leading malaria vaccine candidate antigen. However, the existence of different variants of this antigen can limit efficacy of the vaccine development based on this protein. Therefore, in this study, the main objective was to define the frequency of PfMSP-1<sub>19 </sub>haplotypes in malaria hypoendemic region of Iran and also to analyse cross-reactive and/or variant-specific antibody responses to four PfMSP-1<sub>19 </sub>variant forms.</p> <p>Methods</p> <p>The PfMSP-1<sub>19 </sub>was genotyped in 50 infected subjects with <it>P. falciparum </it>collected during 2006-2008. Four GST-PfMSP-1<sub>19 </sub>variants (E/TSR/L, E/TSG/L, E/KNG/F and Q/KNG/L) were produced in <it>Escherichia coli </it>and naturally occurring IgG antibody to these proteins was evaluated in malaria patients' sera (n = 50) using ELISA. To determine the cross-reactivity of antibodies against each PfMSP-1<sub>19 </sub>variant in <it>P. falciparum-</it>infected human sera, an antibody depletion assay was performed in eleven corresponding patients' sera.</p> <p>Results</p> <p>Sequence data of the PfMSP-1<sub>19 </sub>revealed five variant forms in which the haplotypes Q/KNG/L and Q/KNG/F were predominant types and the second most frequent haplotype was E/KNG/F. In addition, the prevalence of IgG antibodies to all four PfMSP-1<sub>19 </sub>variant forms was equal and high (84%) among the studied patients' sera. Immunodepletion results showed that in Iranian malaria patients, Q/KNG/L variant could induce not only cross-reactive antibody responses to other PfMSP-1<sub>19 </sub>variants, but also could induce some specific antibodies that are not able to recognize the E/TSG/L or E/TSR/L variant forms.</p> <p>Conclusion</p> <p>The present findings demonstrated the presence of non-variant specific antibodies to PfMSP-1<sub>19 </sub>in Iranian falciparum malaria patients. This data suggests that polymorphism in PfMSP-1<sub>19 </sub>is less important and one variant of this antigen, particularly Q/KNG/L, may be sufficient to be included in PfMSP-1<sub>19</sub>-based vaccine.</p

    Terrestrial Snakebites in the South East of the Arabian Peninsula: Patient Characteristics, Clinical Presentations, and Management

    Get PDF
    Background: To describe the characteristics, clinical presentations, management and complications of snakebites in the border region between Al-Ain, United Arab Emirates (UAE) and Buraimi, Sultanate of Oman. Methodology/Principal Findings: We carried out a retrospective review of medical records to study snakebite cases over four-year duration at three tertiary hospitals. Overall, 64 snakebite cases were studied with median hospitalization of 2 (interquartile range [IQR] 1–4) days. The majority of cases were male (87.5%), and most (61%) of the incidents occurred during summer months. The bite sites were predominantly (95%) to the feet and hands. Main clinical features included pain, local swelling, and coagulopathy, blistering and skin peeling. Overall, there were no deaths, but few major complications occurred; extensive skin peeling (n = 5, 8%), multi-organ failure (n = 1, 1.5%), and compartment syndrome (n = 1, 1.5%). Polyvalent anti snake venom (ASV), analgesia, tetanus toxoid, intravenous fluids, and antibiotics such as ampicillin, cloxacillin, and cephalosporins were commonly instituted as part of treatment protocols in the three hospitals. Conclusion: The overwhelming majority of bites occurred during summer months, and envenomations were more common in, relatively, young male farmers, but with no serious clinical complications. Prevention and treatment strategies should include increasing public awareness, developing management guidelines, and manufacturing specific ASV for a wid

    Patterns of Retinal Damage Facilitate Differential Diagnosis between Susac Syndrome and MS

    Get PDF
    Susac syndrome, a rare but probably underdiagnosed combination of encephalopathy, hearing loss, and visual deficits due to branch retinal artery occlusion of unknown aetiology has to be considered as differential diagnosis in various conditions. Particularly, differentiation from multiple sclerosis is often challenging since both clinical presentation and diagnostic findings may overlap. Optical coherence tomography is a powerful and easy to perform diagnostic tool to analyse the morphological integrity of retinal structures and is increasingly established to depict characteristic patterns of retinal pathology in multiple sclerosis. Against this background we hypothesised that differential patterns of retinal pathology facilitate a reliable differentiation between Susac syndrome and multiple sclerosis. In this multicenter cross-sectional observational study optical coherence tomography was performed in nine patients with a definite diagnosis of Susac syndrome. Data were compared with age-, sex-, and disease duration-matched relapsing remitting multiple sclerosis patients with and without a history of optic neuritis, and with healthy controls. Using generalised estimating equation models, Susac patients showed a significant reduction in either or both retinal nerve fibre layer thickness and total macular volume in comparison to both healthy controls and relapsing remitting multiple sclerosis patients. However, in contrast to the multiple sclerosis patients this reduction was not distributed over the entire scanning area but showed a distinct sectorial loss especially in the macular measurements. We therefore conclude that patients with Susac syndrome show distinct abnormalities in optical coherence tomography in comparison to multiple sclerosis patients. These findings recommend optical coherence tomography as a promising tool for differentiating Susac syndrome from MS

    The antibody response to Plasmodium falciparum Merozoite Surface Protein 4: comparative assessment of specificity and growth inhibitory antibody activity to infection-acquired and immunization-induced epitopes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria remains a global public health challenge. It is widely believed that an effective vaccine against malaria will need to incorporate multiple antigens from the various stages of the parasite's complex life cycle. <it>Plasmodium falciparum </it>Merozoite Surface Protein 4 (MSP4) is a vaccine candidate that has been selected for development for inclusion in an asexual stage subunit vaccine against malaria.</p> <p>Methods</p> <p>Nine monoclonal antibodies (Mabs) were produced against <it>Escherichia coli</it>-expressed recombinant MSP4 protein and characterized. These Mabs were used to develop an MSP4-specific competition ELISA to test the binding specificity of antibodies present in sera from naturally <it>P. falciparum</it>-infected individuals from a malaria endemic region of Vietnam. The Mabs were also tested for their capacity to induce <it>P. falciparum </it>growth inhibition <it>in vitro </it>and compared against polyclonal rabbit serum raised against recombinant MSP4</p> <p>Results</p> <p>All Mabs reacted with native parasite protein and collectively recognized at least six epitopes. Four of these Mabs recognize reduction-sensitive epitopes within the epidermal growth factor-like domain found near the C-terminus of MSP4. These sera were shown to contain antibodies capable of inhibiting the binding of the six Mabs indicating infection-acquired responses to the six different epitopes of MSP4. All of the six epitopes were readily recognized by human immune sera. Competition ELISA titres varied from 20 to 640, reflecting heterogeneity in the intensity of the humoral response against the protein among different individuals. The IgG responses during acute and convalescent phases of infection were higher to epitopes in the central region than to other parts of MSP4. Immunization with full length MSP4 in Freund's adjuvant induced rabbit polyclonal antisera able to inhibit parasite growth <it>in vitro </it>in a manner proportionate to the antibody titre. By contrast, polyclonal antisera raised to individual recombinant fragments rMSP4A, rMSP4B, rMSP4C and rMSP4D gave negligible inhibition. Similarly, murine Mabs alone or in combination did not inhibit parasite growth.</p> <p>Conclusions</p> <p>The panel of MSP4-specific Mabs produced were found to recognize six distinct epitopes that are also targeted by human antibodies during natural malaria infection. Antibodies directed to more than three epitope regions spread across MSP4 are likely to be required for <it>P. falciparum </it>growth inhibition <it>in vitro</it>.</p

    Cellular responses to modified Plasmodium falciparum MSP119 antigens in individuals previously exposed to natural malaria infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MSP1 processing-inhibitory antibodies bind to epitopes on the 19 kDa C-terminal region of the <it>Plasmodium falciparum </it>merozoite surface protein 1 (MSP1<sub>19</sub>), inhibiting erythrocyte invasion. Blocking antibodies also bind to this antigen but prevent inhibitory antibodies binding, allowing invasion to proceed. Recombinant MSP1<sub>19 </sub>had been modified previously to allow inhibitory but not blocking antibodies to continue to bind. Immunization with these modified proteins, therefore, has the potential to induce more effective protective antibodies. However, it was unclear whether the modification of MSP1<sub>19 </sub>would affect critical T-cell responses to epitopes in this antigen.</p> <p>Methods</p> <p>The cellular responses to wild-type MSP1<sub>19 </sub>and a panel of modified MSP1<sub>19 </sub>antigens were measured using an <it>in-vitro </it>assay for two groups of individuals: the first were malaria-naïve and the second had been naturally exposed to <it>Plasmodium falciparum </it>infection. The cellular responses to the modified proteins were examined using cells from malaria-exposed infants and adults.</p> <p>Results</p> <p>Interestingly, stimulation indices (SI) for responses induced by some of the modified proteins were at least two-fold higher than those elicited by the wild-type MSP1<sub>19</sub>. A protein with four amino acid substitutions (Glu27→Tyr, Leu31→Arg, Tyr34→Ser and Glu43→Leu) had the highest stimulation index (SI up to 360) and induced large responses in 64% of the samples that had significant cellular responses to the modified proteins.</p> <p>Conclusion</p> <p>This study suggests that specific MSP1<sub>19 </sub>variants that have been engineered to improve their antigenicity for inhibitory antibodies, retain T-cell epitopes and the ability to induce cellular responses. These proteins are candidates for the development of MSP1-based malaria vaccines.</p
    corecore