413 research outputs found
Dodecyl-TPP Targets Mitochondria and Potently Eradicates Cancer Stem Cells (CSCs): Synergy With FDA-Approved Drugs and Natural Compounds (Vitamin C and Berberine).
Elevated mitochondrial biogenesis and/or metabolism are distinguishing features of cancer cells, as well as Cancer Stem Cells (CSCs), which are involved in tumor initiation, metastatic dissemination, and therapy resistance. In fact, mitochondria-impairing agents can be used to hamper CSCs maintenance and propagation, toward better control of neoplastic disease. Tri-Phenyl-Phosphonium (TPP)-based mitochondrially-targeted compounds are small non-toxic and biologically active molecules that are delivered to and accumulated within the mitochondria of living cells. Therefore, TPP-derivatives may represent potentially "powerful" candidates to block CSCs. Here, we evaluate the metabolic and biological effects induced by the TPP-derivative, termed Dodecyl-TPP (d-TPP) on breast cancer cells. By employing the 3D mammosphere assay in MCF-7 cells, we demonstrate that treatment with d-TPP dose-dependently inhibits the propagation of breast CSCs in suspension. Also, d-TPP targets adherent "bulk" cancer cells, by decreasing MCF-7 cell viability. The analysis of metabolic flux using Seahorse Xfe96 revealed that d-TPP potently inhibits the mitochondrial oxygen consumption rate (OCR), while simultaneously shifting cell metabolism toward glycolysis. Thereafter, we exploited this ATP depletion phenotype and strict metabolic dependency on glycolysis to eradicate the residual glycolytic CSC population, by using additional metabolic stressors. More specifically, we applied a combination strategy based on treatment with d-TPP, in the presence of a selected panel of natural and synthetic compounds, some of which are FDA-approved, that are known to behave as glycolysis (Vitamin C, 2-Deoxy-Glucose) and OXPHOS (Doxycyline, Niclosamide, Berberine) inhibitors. This two-hit scheme effectively decreased CSC propagation, at concentrations of d-TPP toxic only for cancer cells, but not for normal cells, as evidenced using normal human fibroblasts (hTERT-BJ1) as a reference point. Taken together, d-TPP halts CSCs propagation and targets "bulk" cancer cells, without eliciting the relevant undesirable off-target effects in normal cells. These observations pave the way for further exploring the potential of TPP-based derivatives in cancer therapy. Moreover, TPP-based compounds should be investigated for their potential to discriminate between "normal" and "malignant" mitochondria, suggesting that distinct biochemical, and metabolic changes in these organelles could precede specific normal or pathological phenotypes. Lastly, our data validate the manipulation of the energetic machinery as useful tool to eradicate CSCs
Mitochondrial Fission Factor (MFF) inhibits mitochondrial metabolism and reduces breast cancer stem cell (CSC) activity
Elevated mitochondrial biogenesis and metabolism represent key features of breast cancer stem cells (CSCs), whose propagation is conducive to disease onset and progression. Therefore, interfering with mitochondria biology and function may be regarded as a useful approach to eradicate CSCs. Here, we used the breast cancer cell line MCF7 as a model system to interrogate how mitochondrial fission contributes to the development of mitochondrial dysfunction toward the inhibition of metabolic flux and stemness. We generated an isogenic MCF7 cell line transduced with Mitochondrial Fission Factor (MCF7-MFF), which is primarily involved in mitochondrial fission. We evaluated the biochemical, molecular and functional properties of MCF7-MFF cells, as compared to control MCF7 cells transduced with the empty vector (MCF7-Control). We observed that MFF over-expression reduces both mitochondrial mass and activity, as evaluated using the mitochondrial probes MitroTracker Red and MitoTracker Orange, respectively. The analysis of metabolic flux using the Seahorse XFe96 revealed the inhibition of OXPHOS and glycolysis in MCF7-MFF cells, suggesting that increased mitochondrial fission may impair the biochemical properties of these organelles. Notably, CSCs activity, assessed by 3D-tumorsphere assays, was reduced in MCF7-MFF cells. A similar trend was observed for the activity of ALDH, a well-established marker of stemness. We conclude that enhanced mitochondrial fission may compromise CSCs propagation, through the impairment of mitochondrial function, possibly leading to a quiescent cell phenotype. Unbiased proteomic analysis revealed that proteins involved in mitochondrial dysfunction, oxidative stress-response, fatty acid metabolism and hypoxia signaling are among the most highly up-regulated in MCF7-MFF cells. Of note, integrated analysis of top regulatory networks obtained from unbiased proteomics in MCF7-MFF cells predicts that this cell phenotype activates signaling systems and effectors involved in the inhibition of cell survival and adhesion, together with the activation of specific breast cancer cell death programs. Overall, our study shows that unbalanced and abnormal activation of mitochondrial fission may drive the impairment of mitochondrial metabolic function, leading to inhibition of CSC propagation, and the activation of quiescence programs. Exploiting the potential of mitochondria to control pivotal events in tumor biology may, therefore, represent a useful tool to prevent disease progression
GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment
The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells. We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1. We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation. These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor angiogenesis. Targeting the multifaceted interactions between cancer cells and tumor microenvironment involving both GPCRs and growth factor receptors has potential in future combination anticancer therapies
Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope
We present a new measurement of the kinematic Sunyaev-Zeldovich effect using
data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation
Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area,
we evaluate the mean pairwise baryon momentum associated with the positions of
50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A
non-zero signal arises from the large-scale motions of halos containing the
sample galaxies. The data fits an analytical signal model well, with the
optical depth to microwave photon scattering as a free parameter determining
the overall signal amplitude. We estimate the covariance matrix of the mean
pairwise momentum as a function of galaxy separation, using microwave sky
simulations, jackknife evaluation, and bootstrap estimates. The most
conservative simulation-based errors give signal-to-noise estimates between 3.6
and 4.1 for varying galaxy luminosity cuts. We discuss how the other error
determinations can lead to higher signal-to-noise values, and consider the
impact of several possible systematic errors. Estimates of the optical depth
from the average thermal Sunyaev-Zeldovich signal at the sample galaxy
positions are broadly consistent with those obtained from the mean pairwise
momentum signal.Comment: 15 pages, 8 figures, 2 table
Odontostomatologic management of patients receiving oral anticoagulant therapy: a retrospective multicentric study
Introduction: Today, we frequently find patients taking oral anticoagulant therapy (OAT), a prophylaxis against the
occurrence of thromboembolic events. An oral surgeon needs to know how to better manage such patients, in
order to avoid hemorrhagic and thromboembolic complications.
Materials and methods: A group of 193 patients (119 men aged between 46 and 82 and 74 women aged
between 54 and 76) undergoing OAT for more than 5 years were managed with a standardized management
protocol and a 2-months follow-up. The aim of the present study was to apply a protocol, which could provide a
safe intra- and postoperative management of patients on OAT.
Results: Among the 193 patients, only 2 had postoperative complications.
Conclusions: We think that the protocol used in the present study can be used for complete safety in the
treatment of this type of patients.
Keywords: Oral Anticoagulant Therapy (OAT), Tranexamic Acid, Oral Surger
Investment in online self-evaluation tests: A theoretical approach
BACKGROUND: Large-scale traumatic events may burden any affected public health system with consequential charges. One major post-disaster, expense factor emerges form early psychological interventions and subsequent, posttraumatic mental health care. Due to the constant increase in mental health care costs, also post-disaster public mental health requires best possible, cost-effective care systems. Screening and monitoring the affected population might be one such area to optimize the charges. METHODS: This paper analyzes the potential cost-effectiveness of monitoring a psychologically traumatized population and to motivate individuals at risk to seek early treatment. As basis for our model served Grossman's health production function, which was modified according to fundamental concepts of cost-benefit analyzes, to match the basic conditions of online monitoring strategies. We then introduce some fundamental concepts of cost-benefit analysis. RESULTS: When performing cost-benefit analyses, policy makers have to consider both direct costs (caused by treatment) and indirect costs (due to non-productivity). Considering both costs sources we find that the use of Internet-based psychometric screening instruments may reduce the duration of future treatment, psychological burden and treatment costs. CONCLUSION: The identification of individuals at risk for PTSD following a disaster may help organizations prevent both the human and the economic costs of this disease. Consequently future research on mental health issues should put more emphasis on the importance of monitoring to detect early PTSD and focus the most effective resources within early treatment and morbidity prevention
Comparative studies on the pathogenicity and tissue distribution of three virulence variants of classical swine fever virus, two field isolates and one vaccine strain, with special regard to immunohistochemical investigations
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to compare the tissue distribution and pathogenicity of three virulence variants of classical swine fever virus (CSFV) and to investigate the applicability of various conventional diagnostic procedures.</p> <p>Methods</p> <p>64 pigs were divided into three groups and infected with the highly virulent isolate ISS/60, the moderately virulent isolate Wingene'93 and the live attenuated vaccine strain Riems, respectively. Clinical signs, gross and histopathological changes were compared in relation to time elapsed post infection. Virus spread in various organs was followed by virus isolation, by immunohistochemistry, applying monoclonal antibodies in a two-step method and by <it>in situ </it>hybridisation using a digoxigenin-labelled riboprobe.</p> <p>Results</p> <p>The tissue distribution data are discussed in details, analyzing the results of the various diagnostic approaches. The comparative studies revealed remarkable differences in the onset of clinical signs as well as in the development of the macro- and microscopical changes, and in the tissue distribution of CSFV in the three experimental groups.</p> <p>Conclusion</p> <p>The present study demonstrates that in the case of highly and moderately virulent virus variants the virulence does not affect the pattern of the viral spread, however, it influences the outcome, the duration and the intensity of the disease. Immunohistochemistry has the advantage to allow the rapid detection and localisation of the virus, especially in cases of early infection, when clinical signs are still absent. Compared to virus isolation, the advantage of this method is that no cell culture facilities are required. Thus, immunohistochemistry provides simple and sensitive tools for the prompt detection of newly emerging variants of CSFV, including the viruses of very mild virulence.</p
Levothyroxine Monotherapy Cannot Guarantee Euthyroidism in All Athyreotic Patients
CONTEXT: Levothyroxine monotherapy is the treatment of choice for hypothyroid patients because peripheral T4 to T3 conversion is believed to account for the overall tissue requirement for thyroid hormones. However, there are indirect evidences that this may not be the case in all patients. OBJECTIVE: To evaluate in a large series of athyreotic patients whether levothyroxine monotherapy can normalize serum thyroid hormones and thyroid-pituitary feedback. DESIGN: Retrospective study. SETTING: Academic hospital. PATIENTS: 1,811 athyreotic patients with normal TSH levels under levothyroxine monotherapy and 3,875 euthyroid controls. MEASUREMENTS: TSH, FT4 and FT3 concentrations by immunoassays. RESULTS: FT4 levels were significantly higher and FT3 levels were significantly lower (p<0.001 in both cases) in levothyroxine-treated athyreotic patients than in matched euthyroid controls. Among the levothyroxine-treated patients 15.2% had lower serum FT3 and 7.2% had higher serum FT4 compared to euthyroid controls. A wide range of FT3/FT4 ratios indicated a major heterogeneity in the peripheral T3 production capacity in different individuals. The correlation between thyroid hormones and serum TSH levels indicated an abnormal feedback mechanism in levothyroxine-treated patients. CONCLUSIONS: Athyreotic patients have a highly heterogeneous T3 production capacity from orally administered levothyroxine. More than 20% of these patients, despite normal TSH levels, do not maintain FT3 or FT4 values in the reference range, reflecting the inadequacy of peripheral deiodination to compensate for the absent T3 secretion. The long-term effects of chronic tissue exposure to abnormal T3/T4 ratio are unknown but a sensitive marker of target organ response to thyroid hormones (serum TSH) suggests that this condition causes an abnormal pituitary response. A more physiological treatment than levothyroxine monotherapy may be required in some hypothyroid patients
- …