18 research outputs found

    Enhanced prefrontal serotonin 5-HT1A currents in a mouse model of Williams-Beuren syndrome with low innate anxiety

    Get PDF
    Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by the hemizygous deletion of 28 genes on chromosome 7, including the general transcription factor GTF2IRD1. Mice either hemizygously (Gtf2ird1+/−) or homozygously (Gtf2ird1−/−) deleted for this transcription factor exhibit low innate anxiety, low aggression and increased social interaction, a phenotype that shares similarities to the high sociability and disinhibition seen in individuals with WBS. Here, we investigated the inhibitory effects of serotonin (5-HT) on the major output neurons of the prefrontal cortex in Gtf2ird1−/− mice and their wildtype (WT) siblings. Prefrontal 5-HT receptors are known to modulate anxiety-like behaviors, and the Gtf2ird1−/− mice have altered 5-HT metabolism in prefrontal cortex. Using whole cell recording from layer V neurons in acute brain slices of prefrontal cortex, we found that 5-HT elicited significantly larger inhibitory, outward currents in Gtf2ird1−/− mice than in WT controls. In both genotypes, these currents were resistant to action potential blockade with TTX and were suppressed by the selective 5-HT1A receptor antagonist WAY-100635, suggesting that they are mediated directly by 5-HT1A receptors on the recorded neurons. Control experiments suggest a degree of layer and receptor specificity in this enhancement since 5-HT1A receptor-mediated responses in layer II/III pyramidal neurons were unchanged as were responses mediated by two other inhibitory receptors in layer V pyramidal neurons. Furthermore, we demonstrate GTF2IRD1 protein expression by neurons in layer V of the prefrontal cortex. Our finding that 5-HT1A-mediated responses are selectively enhanced in layer V pyramidal neurons of Gtf2ird1−/− mice gives insight into the cellular mechanisms that underlie reduced innate anxiety and increased sociability in these mice, and may be relevant to the low social anxiety and disinhibition in patients with WBS and their sensitivity to serotonergic medicines

    Oxytocin and Vasopressin Are Dysregulated in Williams Syndrome, a Genetic Disorder Affecting Social Behavior

    Get PDF
    The molecular and neural mechanisms regulating human social-emotional behaviors are fundamentally important but largely unknown; unraveling these requires a genetic systems neuroscience analysis of human models. Williams Syndrome (WS), a condition caused by deletion of ∼28 genes, is associated with a gregarious personality, strong drive to approach strangers, difficult peer interactions, and attraction to music. WS provides a unique opportunity to identify endogenous human gene-behavior mechanisms. Social neuropeptides including oxytocin (OT) and arginine vasopressin (AVP) regulate reproductive and social behaviors in mammals, and we reasoned that these might mediate the features of WS. Here we established blood levels of OT and AVP in WS and controls at baseline, and at multiple timepoints following a positive emotional intervention (music), and a negative physical stressor (cold). We also related these levels to standardized indices of social behavior. Results revealed significantly higher median levels of OT in WS versus controls at baseline, with a less marked increase in AVP. Further, in WS, OT and AVP increased in response to music and to cold, with greater variability and an amplified peak release compared to controls. In WS, baseline OT but not AVP, was correlated positively with approach, but negatively with adaptive social behaviors. These results indicate that WS deleted genes perturb hypothalamic-pituitary release not only of OT but also of AVP, implicating more complex neuropeptide circuitry for WS features and providing evidence for their roles in endogenous regulation of human social behavior. The data suggest a possible biological basis for amygdalar involvement, for increased anxiety, and for the paradox of increased approach but poor social relationships in WS. They also offer insight for translating genetic and neuroendocrine knowledge into treatments for disorders of social behavior

    Using Transcription Modules to Identify Expression Clusters Perturbed in Williams-Beuren Syndrome

    Get PDF
    The genetic dissection of the phenotypes associated with Williams-Beuren Syndrome (WBS) is advancing thanks to the study of individuals carrying typical or atypical structural rearrangements, as well as in vitro and animal studies. However, little is known about the global dysregulations caused by the WBS deletion. We profiled the transcriptomes of skin fibroblasts from WBS patients and compared them to matched controls. We identified 868 differentially expressed genes that were significantly enriched in extracellular matrix genes, major histocompatibility complex (MHC) genes, as well as genes in which the products localize to the postsynaptic membrane. We then used public expression datasets from human fibroblasts to establish transcription modules, sets of genes coexpressed in this cell type. We identified those sets in which the average gene expression was altered in WBS samples. Dysregulated modules are often interconnected and share multiple common genes, suggesting that intricate regulatory networks connected by a few central genes are disturbed in WBS. This modular approach increases the power to identify pathways dysregulated in WBS patients, thus providing a testable set of additional candidates for genes and their interactions that modulate the WBS phenotypes

    Williams-Beuren syndrome TRIM50 encodes an E3 ubiquitin ligase.

    Get PDF
    Williams-Beuren syndrome (WBS) is a neurodevelopmental and multisystemic disease that results from hemizygosity of approximately 25 genes mapping to chromosomal region 7q11.23. We report here the preliminary description of eight novel genes mapping within the WBS critical region and/or its syntenic mouse region. Three of these genes, TRIM50, TRIM73 and TRIM74, belong to the TRIpartite motif gene family, members of which were shown to be associated to several human genetic diseases. We describe the preliminary functional characterization of these genes and show that Trim50 encodes an E3 ubiquitin ligase, opening the interesting hypothesis that the ubiquitin-mediated proteasome pathway might be involved in the WBS phenotype
    corecore