13 research outputs found

    A Constraint Programming Approach for Non-Preemptive Evacuation Scheduling

    Full text link
    Large-scale controlled evacuations require emergency services to select evacuation routes, decide departure times, and mobilize resources to issue orders, all under strict time constraints. Existing algorithms almost always allow for preemptive evacuation schedules, which are less desirable in practice. This paper proposes, for the first time, a constraint-based scheduling model that optimizes the evacuation flow rate (number of vehicles sent at regular time intervals) and evacuation phasing of widely populated areas, while ensuring a nonpreemptive evacuation for each residential zone. Two optimization objectives are considered: (1) to maximize the number of evacuees reaching safety and (2) to minimize the overall duration of the evacuation. Preliminary results on a set of real-world instances show that the approach can produce, within a few seconds, a non-preemptive evacuation schedule which is either optimal or at most 6% away of the optimal preemptive solution.Comment: Submitted to the 21st International Conference on Principles and Practice of Constraint Programming (CP 2015). 15 pages + 1 reference pag

    A new urban freight distribution scheme and an optimization methodology for reducing its overall cost

    Get PDF
    The paper refers to an innovative urban freight distribution scheme, aimed at reducing the externalities connected with the freight delivery process. Both packages destined to commercial activities and to end consumers (e-commerce) are taken into account. Each package is characterized by an address and dimensions. In the proposed transport system, freight is firstly delivered to the UDC on the border of urban areas through trucks or trains which perform the long distance transport. After, freight is reorganized and consolidated into load units, i.e. the FURBOT boxes, according to packages dimensions and to the addresses of receivers. Each box is addressed to a temporary unloading bay and it is delivered there by a FURBOT vehicle. The receivers are in charge of collecting their packages in the related unloading bays where they have been delivered. The paper concerns a methodology for optimizing this freight transport system's performances. The overall methodology receives in input the actual freight demand and the road network, and finds the transport system parameters (number of required FURBOT boxes, their temporary unloading bay, the FURBOT fleet dimension and the FURBOT vehicle routing) that minimize the system overall cost. The overall cost is a sum of the users' cost, which depends on the distance they have to walk for collecting their packages in the FURBOT box, and of the operator's cost, which depends on the number of required boxes, the total distance travelled by the FURBOT vehicles and the required number of FURBOT vehicles. The overall procedure has been applied to the case study of Barreiro old town, a suburb of Lisbon, Portugal

    Detection of steady state in pedestrian experiments

    No full text
    Initial conditions could have strong influences on the dynamics of pedestrian experiments. Thus, a careful differentiation between transient state and steady state is important and necessary for a thorough study. In this contribution a modified CUSUM algorithm is proposed to automatically detect steady state from time series of pedestrian experiments. Major modifications on the statistics include introducing a step function to enhance the sensitivity, adding a boundary to limit the increase, and simplifying the calculation to improve the computational efficiency. Furthermore, the threshold of the detection parameter is calibrated using an autoregressive process. By testing the robustness, the modified CUSUM algorithm is able to reproduce identical steady state with different references. Its application well contributes to accurate analysis and reliable comparison of experimental results

    A macroscopic model to reproduce self-organization at bottlenecks

    No full text
    9 pages, 27 ref.We propose a model for self-organized traffic flow at bottlenecks that consists of a scalar conservation law with a nonlocal constraint on the flux. The constraint is a function of an organization marker which evolves through an ODE depending on the upstream traffic density and its variations. We prove well-posedness for the problem, construct and analyze a finite volume scheme, perform numerical simulations and discuss the model and related perspectives

    Building knowledge extraction from BIM/IFC data for analysis in graph databases

    No full text
    This paper deals with the problem of knowledge extraction and processing building related data. Information is retrieved from the IFC files, which are an industry standard for storing building information models (BIM). The IfcWebServer is used as a tool for transforming building information into the graph model. This model is stored in a graph database which allows for obtaining knowledge by defining specific graph queries. The process is illustrated by examples of extracting information needed to find different types of routes in an office building
    corecore