14 research outputs found

    Identification of a major QTL for Xanthomonas arboricola pv. pruni resistance in apricot

    Get PDF
    Xanthomonas arboricola pv. pruni causes bacterial spot of stone fruit resulting in severe yield losses in apricot production systems. Present on all continents, the pathogen is regulated in Europe as a quarantine organism. Host resistance is an important component of integrated pest management; however, little work has been done describing resistance against X. arboricola pv. pruni. In this study, an apricot population derived from the cross “Harostar” × “Rouge de Mauves” was used to construct two parental genetic maps and to perform a quantitative trait locus analysis of resistance to X. arboricola pv. pruni. A population of 101 F1 individuals was inoculated twice for two consecutive years in a quarantine greenhouse with a mixture of bacterial strains, and disease incidence and resistance index data were collected. A major QTL for disease incidence and resistance index accounting respectively for 53 % (LOD score of 15.43) and 46 % (LOD score of 12.26) of the phenotypic variation was identified at the same position on linkage group 5 of “Rouge de Mauves.” Microsatellite marker UDAp-452 co-segregated with the resistance, and two flanking microsatellites, namely BPPCT037 and BPPCT038A, were identified. When dividing the population according to the alleles of UDAp-452, the subgroup with unfavorable allele had a disease incidence of 32.6 % whereas the group with favorable allele had a disease incidence of 21 %, leading to a reduction of 35.6 % in disease incidence. This study is a first step towards the marker-assisted breeding of new apricot varieties with an increased tolerance to X. arboricola pv. pruni

    QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny

    Get PDF
    Brown rot (BR) caused by Monilinia spp. leads to significant post-harvest losses in stone fruit production, especially peach. Previous genetic analyses in peach progenies suggested that BR resistance segregates as a quantitative trait. In order to uncover genomic regions associated with this trait and identify molecular markers for assisted selection (MAS) in peach, an F1 progeny from the cross "Contender" (C, resistant) 7 "Elegant Lady" (EL, susceptible) was chosen for quantitative trait loci (QTL) analysis. Over two phenotyping seasons, skin (SK) and flesh (FL) artificial infections were performed on fruits using a Monilinia fructigena isolate. For each treatment, infection frequency (if) and average rot diameter (rd) were scored. Significant seasonal and intertrait correlations were found. Maturity date (MD) was significantly correlated with disease impact. Sixty-three simple sequence repeats (SSRs) plus 26 single-nucleotide polymorphism (SNP) markers were used to genotype the C 7 EL population and to construct a linkage map. C 7 EL map included the eight Prunus linkage groups (LG), spanning 572.92 cM, with an average interval distance of 6.9 cM, covering 78.73 % of the peach genome (V1.0). Multiple QTL mapping analysis including MD trait as covariate uncovered three genomic regions associated with BR resistance in the two phenotyping seasons: one containing QTLs for SK resistance traits near M1a (LG C 7 EL-2, R2 = 13.1-31.5 %) and EPPISF032 (LG C 7 EL-4, R2 = 11-14 %) and the others containing QTLs for FL resistance, near markers SNP_IGA_320761 and SNP_IGA_321601 (LG3, R2 = 3.0-11.0 %). These results suggest that in the C 7 EL F1 progeny, skin resistance to fungal penetration and flesh resistance to rot spread are distinguishable mechanisms constituting BR resistance trait, associated with different genomic regions. Discovered QTLs and their associated markers could assist selection of new cultivars with enhanced resistance to Monilinia spp. in fruit

    Linkage disequilibrium in French wild cherry germplasm and worldwide sweet cherry germplasm

    No full text
    A basic knowledge on linkage disequilibrium (LD) is necessary in order to determine resolution of association studies. We investigated the extent and patterns of LD in a self-incompatible species ( Prunus avium L.), in 3 groups (wild cherry, sweet cherry landraces and sweet cherry modern varieties), using a set of 35 microsatellite markers and the gametophytic self-incompatibility locus. Since population structure might create spurious LD, we thus used the information provided by a structure analysis published in a previous study to perform the LD analysis. In the current study, we detected a greater LD extent in sweet cherry than in wild cherry, which is plausibly due to the bottleneck associated with domestication and breeding. Higher LD values in sweet cherry sub-groups may be explained by smaller sample sizes. We also showed that the remaining structure in the groups of sweet cherry, in particular landraces, is responsible for a part of the LD extent. Intra-group relatedness may also account for extensive LD in two sub-groups. These results demonstrate, if ever necessary, the importance of controlling the genetic structure and relatedness when estimating LD. Moreover, LD decays very rapidly with genetic linkage distance in both wild and sweet cherries, which seems promising for future association studies
    corecore