17 research outputs found

    Changes in integument structure during the imaginal molt of the honey bee

    No full text
    The changing pattern of developing cuticle and associated epidermis is described during the imaginal molt in the honey bee. Observations began immediately after the pupal molt, and included histological analyses of the integument during apolysis and the subsequent deposition and differentiation of the adult cuticle. Apolysis coincides with a marked increase in the thickness and reorganization of the epidermal layer, reflecting changes in cell structure. The epidermis remains thickened during the period of cuticle deposition, suggesting intense biosynthetic activity, but turns into a very thin layer during cuticle differentiation, clearly indicating that secretory activity for cuticle formation is terminating. The thoracic cuticle differentiates earlier and becomes thicker than the abdominal. The observed changes in integument structure provide insights that permit an improved physiological characterization for staging pupal and pharate adult development

    Developmental characterization, function and regulation of a Laccase2 encoding gene in the honey bee, Apis mellifera (Hymenoptera, Apinae)

    No full text
    In insects, exoskeleton (cuticle) formation at each molt cycle includes complex biochemical pathways wherein the laccase enzymes (EC 1.10.3.2) may have a key role. We identified an Amlac2 gene that encodes a laccase2 in the honey bee, Apis mellifera, and investigated its function in exoskeleton differentiation. The Amlac2 gene consists of nine exons resulting in an ORE of 2193 nucleotides. The deduced translation product is a 731 amino acid protein of 81.5 kDa and a pl of 6.05. Amlac2 is highly expressed in the integument of pharate adults, and the expression precedes the onset of cuticle pigmentation and the intensification of sclerotization. In accordance with the temporal sequence of exoskeleton differentiation from anterior to posterior direction, the levels of Amlac2 transcript increase earlier in the thoracic than in the abdominal integument. The gene expression lasts even after the bees emerge from brood cells and begin activities in the nest, but declines after the transition to foraging stage, suggesting that maturation of the exoskeleton is completed at this stage. Post-transcriptional knockdown of Amlac2 gene expression resulted in structural abnormalities in the exoskeleton and drastically affected adult eclosion. By setting a ligature between the thorax and abdomen of early pupae we could delay the increase in hemolymph ecdysteroid levels in the abdomen. This severely impaired the increase in Amlac2 transcript levels and also the differentiation of the abdominal exoskeleton. Taken together, these results indicate that Amlac2 expression is controlled by ecdysteroids and has a critical role in the differentiation of the adult exoskeleton of honey bees. (C) 2010 Elsevier Ltd. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[05/03926-5]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[05/03301-5]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[07/08300-2

    Ecdysteroid-Dependent Expression of the Tweedle and Peroxidase Genes during Adult Cuticle Formation in the Honey Bee, Apis mellifera

    No full text
    Cuticle renewal is a complex biological process that depends on the cross talk between hormone levels and gene expression. This study characterized the expression of two genes encoding cuticle proteins sharing the four conserved amino acid blocks of the Tweedle family, AmelTwdl1 and AmelTwdl2, and a gene encoding a cuticle peroxidase containing the Animal haem peroxidase domain, Ampxd, in the honey bee. Gene sequencing and annotation validated the formerly predicted tweedle genes, and revealed a novel gene, Ampxd, in the honey bee genome. Expression of these genes was studied in the context of the ecdysteroid-coordinated pupal-to-adult molt, and in different tissues. Higher transcript levels were detected in the integument after the ecdysteroid peak that induces apolysis, coinciding with the synthesis and deposition of the adult exoskeleton and its early differentiation. The effect of this hormone was confirmed in vivo by tying a ligature between the thorax and abdomen of early pupae to prevent the abdominal integument from coming in contact with ecdysteroids released from the prothoracic gland. This procedure impaired the natural increase in transcript levels in the abdominal integument. Both tweedle genes were expressed at higher levels in the empty gut than in the thoracic integument and trachea of pharate adults. In contrast, Ampxd transcripts were found in higher levels in the thoracic integument and trachea than in the gut. Together, the data strongly suggest that these three genes play roles in ecdysteroid-dependent exoskeleton construction and differentiation and also point to a possible role for the two tweedle genes in the formation of the cuticle (peritrophic membrane) that internally lines the gut.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[05/03926-5]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[07/04314-9]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[03/10581-9]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[07/08300-2]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[07/07594-2

    Use of computed tomography and automated software for quantitative analysis of the vasculature of patients with pulmonary hypertension

    No full text
    <div><p>Abstract Objective: To perform a quantitative analysis of the lung parenchyma and pulmonary vasculature of patients with pulmonary hypertension (PH) on computed tomography angiography (CTA) images, using automated software. Materials and Methods: We retrospectively analyzed the CTA findings and clinical records of 45 patients with PH (17 males and 28 females), in comparison with a control group of 20 healthy individuals (7 males and 13 females); the mean age differed significantly between the two groups (53 ± 14.7 vs. 35 ± 9.6 years; p = 0.0001). Results: The automated analysis showed that, in comparison with the controls, the patients with PH showed lower 10th percentile values for lung density, higher vascular volumes in the right upper lung lobe, and higher vascular volume ratios between the upper and lower lobes. In our quantitative analysis, we found no differences among the various PH subgroups. We inferred that a difference in the 10th percentile values indicates areas of hypovolemia in patients with PH and that a difference in pulmonary vascular volumes indicates redistribution of the pulmonary vasculature and an increase in pulmonary vasculature resistance. Conclusion: Automated analysis of pulmonary vessels on CTA images revealed alterations and could represent an objective diagnostic tool for the evaluation of patients with PH.</p></div

    The effect of vitamin D and zoledronic acid in bone marrow adiposity in kidney transplant patients: A post hoc analysis.

    No full text
    PURPOSE:Osteoblasts and adipocytes are derived from mesenchymal stem cells. An imbalance in the differentiation of these lineages could affect the preservation of bone integrity. Several studies have suggested the importance of this imbalance in the pathogenesis of osteoporosis after kidney transplant (KT), but the role of bone marrow adiposity in this process is not well known, and if the treatment with the anti-absorptive (zoledronic acid-ZA) drugs could attenuate bone loss. Thus, our objective was compare bone marrow adiposity, osteoblasts and osteocytes before and after KT, verify an association between bone remodeling process (Turnover, Volume, and Mineralization-TMV classification), the osteocyte sclerostin expression to evaluate if there is a role of Wnt pathway, as well as the effect of ZA on these cells. METHODS:We studied 29 new living-donor KT patients. One group received ZA at the time of KT plus cholecalciferol for twelve months, and the other group received only cholecalciferol. Bone biopsies were performed at baseline and after 12 months of treatment. Histomorphometric evaluation was performed in bone and bone marrow adipocytes. Sclerostin (Scl) expression in osteocytes was evaluated by immunohistochemistry. RESULTS:Some bone marrow adiposity parameters were increased before KT. After KT, some of them remained increased and they worsened with the use of ZA. In the baseline, lower bone Volume and Turnover, were associated with increased bone marrow adiposity parameters (some of them). After KT, both groups showed the same associations. Osteocyte Scl expression after KT decreased with the use of ZA. We observed also an inverse association between bone adiposity parameters and lower osteocyte sclerostin expression 12 months after KT. CONCLUSION:In conclusion, the present study suggests that KT fails to normalize bone marrow adiposity, and it even gets worse with the use of ZA. Moreover, bone marrow adiposity is inversely associated with bone Volume and Turnover, which seems to be accentuated by the antiresorptive therapy
    corecore