4 research outputs found

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Syntax and semantics question analysis using user modelling and relevance feedback

    No full text
    A Question Answering (QA) system aims to provide relevant answers to users’ natural language (NL) questions by consulting its knowledge base (KB). Providing users with the most relevant answers to their questions is an issue. Many answers returned are not relevant to the questions, and this issue is due to many factors. One such factor is the ambiguity yield during the semantic analysis of lexical extracted from the user’s question. The existing techniques did not consider some of the terms, called modifier terms, in the user’s question which are claimed to have a significant impact of returning the correct answer. The objective of this study is to present the syntax and semantic question analysis using user modelling (UM) and relevance feedback (RF). This analysis interprets all the modifier terms in the user’s question in order to yield correct answers. A combination of UM and RF is used to increase the accuracy of the returned answer. UM helps the QA system to understand the user’s question and manage for question adjustment. RF provides an extended framework for the QA system to avoid or remedy the ambiguity of the user’s question. The analysis utilizes Vector Space Model (VSM) to semantically interpret and correctly converts modifier terms into a quantifiable form. The finding of this analysis demonstrates a good precision percentage of 94.7% in returning relevant answers for each NL question

    A Comprehensive Motivation of Multilayer Control Levels for Microgrids: Synchronization, Voltage and Frequency Restoration Perspective

    No full text
    The current paradigm in integrating intermittent renewable energy sources into microgrids presents various technical challenges in terms of reliable operation and control. This paper performs a comprehensive justification of microgrid trends in dominant control strategies. It covers multilayer hierarchical control schemes, which are able to integrate seamlessly with coordinated control strategies. A general overview of the hierarchical control family that includes primary, secondary, tertiary controls is presented. For power sharing accuracy and capability, droop and non-droop-based controllers are comprehensively studied to address further development. The voltage and frequency restoration techniques are discussed thoroughly based on centralized and decentralized method in order to highlights the differences for better comprehend. The comprehensive studies of grid synchronization strategies also overviewed and analyzed under balanced and unbalanced grid conditions. The details studies for each control level are displayed to highlight the benefits and shortcomings of each control method. A future prediction from the authors’ point of view is also provided to acknowledge which control is adequate to be adopted in proportion to their products applications and a possibility technique for self-synchronization is given in this paper

    Investigation on Multisampling Deadbeat Current Control With Time-Delay Compensation in Grid-Connected Inverter

    No full text
    The control of voltage source converters (VSCs) is now implemented on digital microprocessors. This digitalization has the drawback of time delay in the control loop. The goal of this research work was to investigate improvements that can be obtained from the combination of model-based and model-free time-delay compensation approaches. Deadbeat control (DBC) from model-based techniques and the method of moving the control variable’s sampling instants, or the pulse-width modulation (PWM) updating instants, from model-free time-delay compensation techniques, were put together as the proposed new method of time-delay compensation in this study. These controllers were thoroughly examined in terms of control algorithm design, system stability analysis, and sensitivity analysis of plant parameter perturbations. In addition, thorough Simulink-based computer simulations were conducted in this work to assess the performance of each controller. The proposed method compensated about 80 µs as compared with the time delay compensated by the conventional single-sampling method. This research work was limited to simulations only; hence, conducting experiments to further validate this research work could be a direction for further research
    corecore