608 research outputs found
Civil War Canon: Sites of Confederate Memory in South Carolina
Confederate Commemoration in the Palmetto State
First, this book is not about artillery. Nor is it a visitors’ guide to Civil War sites in South Carolina. Rather, Civil War Canon examines the evolution of Confederate memory and commemoration in the Palmetto State from the 1850s to t...
Mistranslation and its control by tRNA synthetases
Aminoacyl tRNA synthetases are ancient proteins that interpret the genetic material in all life forms. They are thought to have appeared during the transition from the RNA world to the theatre of proteins. During translation, they establish the rules of the genetic code, whereby each amino acid is attached to a tRNA that is cognate to the amino acid. Mistranslation occurs when an amino acid is attached to the wrong tRNA and subsequently is misplaced in a nascent protein. Mistranslation can be toxic to bacteria and mammalian cells, and can lead to heritable mutations. The great challenge for nature appears to be serine-for-alanine mistranslation, where even small amounts of this mistranslation cause severe neuropathologies in the mouse. To minimize serine-for-alanine mistranslation, powerful selective pressures developed to prevent mistranslation through a special editing activity imbedded within alanyl-tRNA synthetases (AlaRSs). However, serine-for-alanine mistranslation is so challenging that a separate, genome-encoded fragment of the editing domain of AlaRS is distributed throughout the Tree of Life to redundantly prevent serine-to-alanine mistranslation. Detailed X-ray structural and functional analysis shed light on why serine-for-alanine mistranslation is a universal problem, and on the selective pressures that engendered the appearance of AlaXps at the base of the Tree of Life
Flexible structure control laboratory development and technology demonstration
An experimental structure is described which was constructed to demonstrate and validate recent emerging technologies in the active control and identification of large flexible space structures. The configuration consists of a large, 20 foot diameter antenna-like flexible structure in the horizontal plane with a gimballed central hub, a flexible feed-boom assembly hanging from the hub, and 12 flexible ribs radiating outward. Fourteen electrodynamic force actuators mounted to the hub and to the individual ribs provide the means to excite the structure and exert control forces. Thirty permanently mounted sensors, including optical encoders and analog induction devices provide measurements of structural response at widely distributed points. An experimental remote optical sensor provides sixteen additional sensing channels. A computer samples the sensors, computes the control updates and sends commands to the actuators in real time, while simultaneously displaying selected outputs on a graphics terminal and saving them in memory. Several control experiments were conducted thus far and are documented. These include implementation of distributed parameter system control, model reference adaptive control, and static shape control. These experiments have demonstrated the successful implementation of state-of-the-art control approaches using actual hardware
Adjusting for verification bias in diagnostic accuracy measures when comparing multiple screening 2 tests - an application to the IP1-PROSTAGRAM study
Introduction Novel screening tests used to detect a target condition are compared against either a reference standard or other existing screening methods. However, as it is not always possible to apply the reference standard on the whole population under study, verification bias is introduced. Statistical methods exist to adjust estimates to account for this bias. We extend common methods to adjust for verification bias when multiple tests are compared to a reference standard using data from a prospective double blind screening study for prostate cancer. Methods Begg and Greenes method and multiple imputation are extended to include the results of multiple screening tests which determine condition verification status. These two methods are compared to the complete case analysis using the IP1-PROSTAGRAM study data. IP1-PROSTAGRAM used a paired84 cohort double-blind design to evaluate the use of imaging as alternative tests to screen for prostate 85 cancer, compared to a blood test called prostate specific antigen (PSA). Participants with positive imaging (index) and/or PSA (control) underwent a prostate biopsy (reference). Results When comparing complete case results to Begg and Greenes and methods of multiple imputation there is a statistically significant increase in the specificity estimates for all screening tests. Sensitivity estimates remained similar across the methods, with completely overlapping 95% confidence intervals. Negative predictive value (NPV) estimates were higher when adjusting for verification bias, compared to complete case analysis, even though the 95% confidence intervals overlap. Positive predictive value (PPV) estimates were similar across all methods. Conclusion Statistical methods are required to adjust for verification bias in accuracy estimates of screening tests. Expanding Begg and Greenes method to include multiple screening tests can be computationally intensive, hence multiple imputation is recommended, especially as it can be modified for low prevalence of the target condition
Noncommutative partially convex rational functions
Motivated by classical notions of bilinear matrix inequalities (BMIs) and
partial convexity, this article investigates partial convexity for
noncommutative functions. It is shown that noncommutative rational functions
that are partially convex admit novel butterfly-type realizations that
necessitate square roots. The notion of xy-convexity, a strengthening of
partial convexity arising in connection with BMIs, is also considered. A
characterization of xy-convex polynomials is given
Recommended from our members
Investing and Hedging Techniques in the Convertible Bond Market
This study was designed to yield three types of information: (1) The degree of perfection prevailing in the parimary and secondary convertible bond markets; (2) the profit potential of various investing and hedging techniques in the convertible bond market; and (3) a judgment on whether each technique can be classified as rational or irrational
A Review of the MLAS Parachute Systems
The NASA Engineering and Safety Center (NESC) is developing the Max Launch Abort System (MLAS) as a risk-mitigation design should problems arise with the baseline Orion spacecraft launch abort design. The Max in MLAS is dedicated to Max Faget, the renowned NASA spacecraft designer. The MLAS flight test vehicle consists of boost skirt, coast skirt and the MLAS fairing which houses a full scale boilerplate Orion Crew Module (CM). The objective of the flight test is to prove that the CM can be released from the MLAS fairing during pad abort conditions without detrimental recontact between the CM and fairing, achieving performance similar to the Orion launch abort system. The boost and coast skirts provide the necessary thrust and stability to achieve the flight test conditions and are released prior to the test -- much like the Little Joe booster was used in the Apollo Launch Escape System tests. To achieve the test objective, two parachutes are deployed from the fairing to reorient the CM/fairing to a heatshield first orientation. The parachutes then provide the force necessary to reduce the total angle of attack and body angular rates required for safe release of the CM from the fairing. A secondary test objective after CM release from the fairing is to investigate the removal of the CM forward bay cover (FBC) with CM drogue parachutes for the purpose of attempting to synchronously deploying a set of CM main parachutes. Although multiple parachute deployments are used in the MLAS flight test vehicle to complete its objective, there are only two parachute types employed in the flight test. Five of the nine parachutes used for MLAS are 27.6 ft D(sub 0) ribbon parachutes, and the remaining four are standard G-12 cargo parachutes. This paper presents an overview of the 27.6 ft D(sub 0) ribbon parachute system employed on the MLAS flight test vehicle for coast skirt separation, fairing reorientation, and as drogue parachutes for the CM after separation from the fairing. Discussion will include: the process used to select this design, previously proven as a spin/stall recovery parachute; descriptions of all components of the parachute system; the minor modifications necessary to adapt the parachute to the MLAS program; the techniques used to analyze the parachute for the multiple roles it performs; a discussion of the rigging techniques used to interface the parachute system to the vehicle; and a brief description of how the evolution of the program affected parachute usage and analysis. An overview of the Objective system, rationale for the MLAS approach and the future of the program will also be presented. We hope to have flight test results to report at the time of the Conference Presentation
- …