74 research outputs found

    HYDRATION AND PROPERTIES OF BLENDED CEMENT SYSTEMS INCORPORATING INDUSTRIAL WASTES

    Get PDF
    This paper aims to study the characteristics of ternary blended system, namely granulated blast-furnace slag (WCS), from iron steel company and Homra (GCB) from Misr Brick (Helwan, Egypt) and silica fume (SF) at 30 mass % pozzolanas and 70 mass % OPC. The required water of standard consistency and setting times were measured as well as physico-chemical and mechanical characteristics of the hardened cement pastes were investigated. Some selected cement pastes were tested by TGA, DTA and FT-IR techniques to investigate the variation of hydrated products of blended cements. The pozzolanic activity of SF is higher than GCB and WCS. The higher activity of SF is mainly due to its higher surface area than the other two pozzolanic materials. On the other side, GCB is more pozzolanic than WCS due to GCB containing crystalline silica quartz in addition to an amorphous phase. The silica quartz acts as nucleating agents which accelerate the rate of hydration in addition to its amorphous phase, which can react with liberating Ca(OH)2 forming additional hydration products

    Kinetics and physico-chemical properties of alkali activated blast-furnace slag/basalt pastes

    Get PDF
    AbstractGranulated blast-furnace slag (GBFS) is a by-product of the metallurgical industry and consists mainly of lime and calcium–magnesium aluminosilicates that defined as the glassy granular material formed by rapid cooling of molten slag with excess water resulting in an amorphous structure. Alkali-activated slag (AAS) binders have taken a great interest from researchers due to its manufacturing process which has important benefits from the point of view of the lower energy requirements and lower emission of greenhouse gases with respect to the manufacturing of Portland cement. In this study, GBFS was replaced by 20, 40 and 60wt.% of basalt activated by 6wt.% of alkali mixture composed of 1:1 sodium hydroxide (SH) and liquid sodium silicate (LSS) mixed with sea water and cured in 100% relative humidity up to 90days. The physic-chemical parameters were studied by determination of setting time, combined water content, bulk density and compressive strength. As the amount of basalt increases the setting time as well as compressive strength decreases while the bulk density increases. The compressive strength values of dried pastes are greater than those of saturated pastes. The hydrated products are identified by TGA/DTG analysis, IR spectroscopy and scanning electron microscopy (SEM)

    Influence of some chemicals and solvents on the lytic activity and the adsorption of bacteriophages on Pectobacterium carotovoroum Subsp. carotovorum

    Get PDF
    Recently, bacteriophages have been used to control hazardous bacterial soft rot disease on crops. However, agricultural plants are frequently treated with different chemicals (fertilizers, pesticides and solvents), so we assessed the effect of some commonly used chemicals and solvents on the lytic activity of tested bacteriophages and their adsorption potential. This study reports the isolation of three specific phages against the Pectobacterium carotovorum subsp. carotovorum DSM 30170 strain, designated as ?PC1, ?PC2 and ?PC3, then partially characterized using electron microscopy and genome size. The 3 isolated phages belong to the Myoviridae family. The results obtained were based on the plaque-forming unit observed after incubation. By increasing the chemical concentrations (from 0.1 to 0.5 mM), calcium chloride (CaCl2) and potassium chloride (KCl) showed a significant increase in the lytic activity of the phages. Copper sulphate (CuSO4) and copper chloride (CuCl2) showed a substantial decrease in the activity of ?PC3; however, such a decrease was insignificant for ?PC1 and ?PC2. By increasing the solvent concentrations (from 30 % v/v to 70 % v/v), propanol, ethanol and methanol showed a significant decrease in the count of the three isolated phages, ?PC1, ?PC2 and ?PC3, compared to the control. Chloroform was the only solvent that did not reduce the phage titer. Our findings offer significant information for developing a strategy to combat the P. carotovorum subsp. carotovorum caused bacterial soft rot disease. avoiding copper compounds and alcoholic solvents such as propanol, ethanol and methanol in plots where phages are applied seems advisable

    Bioactive metabolites of Streptomyces misakiensis display broad-spectrum antimicrobial activity against multidrug-resistant bacteria and fungi

    Get PDF
    BackgroundAntimicrobial resistance is a serious threat to public health globally. It is a slower-moving pandemic than COVID-19, so we are fast running out of treatment options.PurposeThus, this study was designed to search for an alternative biomaterial with broad-spectrum activity for the treatment of multidrug-resistant (MDR) bacterial and fungal pathogen-related infections.MethodsWe isolated Streptomyces species from soil samples and identified the most active strains with antimicrobial activity. The culture filtrates of active species were purified, and the bioactive metabolite extracts were identified by thin-layer chromatography (TLC), preparative high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS). The minimum inhibitory concentrations (MICs) of the bioactive metabolites against MDR bacteria and fungi were determined using the broth microdilution method.ResultsPreliminary screening revealed that Streptomyces misakiensis and S. coeruleorubidus exhibited antimicrobial potential. The MIC50 and MIC90 of S. misakiensis antibacterial bioactive metabolite (ursolic acid methyl ester) and antifungal metabolite (tetradecamethylcycloheptasiloxane) against all tested bacteria and fungi were 0.5 μg/ml and 1 μg/mL, respectively, versus S. coeruleorubidus metabolites: thiocarbamic acid, N,N-dimethyl, S-1,3-diphenyl-2-butenyl ester against bacteria (MIC50: 2 μg/ml and MIC90: 4 μg/mL) and fungi (MIC50: 4 μg/ml and MIC90: 8 μg/mL). Ursolic acid methyl ester was active against ciprofloxacin-resistant strains of Streptococcus pyogenes, S. agalactiae, Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica serovars, colistin-resistant Aeromonas hydrophila and K. pneumoniae, and vancomycin-resistant Staphylococcus aureus. Tetradecamethylcycloheptasiloxane was active against azole- and amphotericin B-resistant Candida albicans, Cryptococcus neoformans, C. gattii, Aspergillus flavus, A. niger, and A. fumigatus. Ursolic acid methyl ester was applied in vivo for treating S. aureus septicemia and K. pneumoniae pneumonia models in mice. In the septicemia model, the ursolic acid methyl ester-treated group had a significant 4.00 and 3.98 log CFU/g decrease (P < 0.05) in liver and spleen tissue compared to the infected, untreated control group. Lung tissue in the pneumonia model showed a 2.20 log CFU/g significant decrease in the ursolic acid methyl ester-treated group in comparison to the control group. The haematological and biochemical markers in the ursolic acid methyl ester-treated group did not change in a statistically significant way. Moreover, no abnormalities were found in the histopathology of the liver, kidneys, lungs, and spleen of ursolic acid methyl ester-treated mice in comparison with the control group. ConclusionS. misakiensis metabolite extracts are broad-spectrum antimicrobial biomaterials that can be further investigated for the potential against MDR pathogen infections. Hence, it opens up new horizons for exploring alternative drugs for current and reemerging diseases

    Pozzolanic action of Homra with lime

    No full text
    154-159<span style="font-size:14.0pt;line-height: 115%;font-family:" times="" new="" roman";mso-fareast-font-family:"times="" roman";="" color:black;mso-ansi-language:en-in;mso-fareast-language:en-in;mso-bidi-language:="" hi"="" lang="EN-IN">Pozzolanic activity of fired clay bricks (Homra) was studied using hydrated lime as an activator. Three different mixes of Homra/hydrated lime were hydrated in a paste form for various time intervals up to 90 days. The hydration characteristics of the hydrated pastes were followed by thermal analysis (TGA and DTA) at various times of hydration. The results obtained from thermal analysis of the formed hydrates were related as much as possible to the pozzolanic activity as determined by chemical analysis. The results indicated that Homra, as a waste product of clay bricks industry, can be used in the production of low cost filled pozzolanic cements.</span
    corecore