# Synthesis and characterizations of charge-transfer complexes of 1.8 -naphthalimides with different acceptors 

M.S. Refat ${ }^{\text {a,b }}$, H. Al Didamony ${ }^{\text {c }}$, Kh.M. Abou El-Nour ${ }^{\text {d }}$, I. Grabchev ${ }^{\text {e }}$, L. El-Zayat ${ }^{\text {a }}$<br>${ }^{a}$ Department of Chemistry, Faculty of Science, Port Said 42111, Port Said University, Egypt<br>${ }^{b}$ Department of Chemistry, Faculty of Science, Taif University, 888 Taif, Kingdom Saudi Arabia<br>${ }^{\text {c Department of Chemistry, Faculty of Science, Zagazig, Zagazig University, Egypt }}$<br>${ }^{d}$ Department of Chemistry, Faculty of Science, Ismailia, Suez Canal University, Egypt<br>${ }^{e}$ University of Sofia "St. Kliment Ohridski", Faculty of Medicine, 1407, 1 Koziak str, Sofia, Bulgaria

Received April 24, 2010; revised July 7, 2010
Five new Charge-Transfer (CT) complexes, formed from the of 4 -substituted- N -allyl-1.8-naphthalimide derivatives as donors and $\sigma$-acceptor (iodine or $\pi$-acceptors) have been investigated. The data obtained indicate the formation of CT-complexes with the general formula of [(donors)(acceptor) $)_{n}$ ], where $\mathrm{n}=1$ in the case of $[($ donors $)] \mathrm{I}_{2}$, $[($ donors $)(\mathrm{DDQ})]$, [(donors)(CLA)], [(donors)(PA)] complexes and [(donors)(TCNQ)] except for [(4MAN)(TCNQ) ${ }_{2}$, and $\left[(4 \mathrm{PAN})(\mathrm{TCNQ})_{2}\right]$ where $\mathrm{n}=2$.

Keywords: Charge-transfer; spectroscopic studies; acceptors; 1.8-naphthalimide.

## INTRODUCTION

1,8-Naphthalimides and their 4-substituted derivatives are the subject of many scientific investigations, including laser active media [1,2], potential photosensitive biologically active units [3], fluorescent markers in biology [4], analgetics in medicine [5,6], collectors in solar energy [7]. Recently, they have been examined as fluorescent dichroic dyes in liquid crystals for utilization in electro-optical devices [8-10].

In the recent years, the charge-transfer complexes of organic species are intensively studied due to their special type of interaction, accompanied by transferring of an electron from the donor to the acceptor [11-15].

We undertook this work following our studies of the charge transfer complexes [16-24], in order to investigate spectrophotometrically the CT complexes formed from the 4 -substituted-N-allyl-1.8-naphthalimide (4-butylamino-N-allyl-1,8naphthalimide (4BAAN), 4-morpholino-N-allyl-1,8-naphthalimide (4MAN), 4-piperdino-N-allyl-1,8-naphthalimide (4PAN), 4-Methylamino-N-allyl-1,8-naphthalimide (4MAAN), and 4-
propyloxy-N-allyl-1,8-naphthalimide (4POAN)), as donors with $\sigma$-acceptors as iodine, and some $\pi$ acceptors (2,3-dichloro-5.6-dicyano-1.4benzoquinone (DDQ), 7.7`, 8.8`-tetracyanoquinodimethane (TCNQ), chloranilic acid (CLA) and picric acid (PA))

## EXPERIMENTAL

## Materials and Methods

All chemicals used in this study are Analar or extra pure grade.

## Preparation of 1,8-naphthalimide derivatives

The syntheses of 4 -substituted-N-allyl-1,8naphthalimides presented in Fig. 1 have been described recently [25].


Fig. 1: General chemical structure of 1,8-naphthalimide derivatives, $\mathrm{R}=\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (4-BAAN), Morphilino (4-MAN), Piperdino (4-PAN), $\mathrm{NHCH}_{3}$ (4MAAN) and $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (4-POAN).

[^0]M.S. Refat et al: Synthesis and characterizations of charge-transfer complexes...

Preparation of 1.8-naphthalimide charge-transfer complexes
Charge-transfer (CT) complexes, formed from the reactions between 4 -substituted- N -allyl-1.8naphthalimides and respective $\sigma$-acceptors, were synthesized as follows:

## [4-Butylamino-N-allyl-1,8-naphthalimide]- $I_{2}$, DDQ, TCNQ, CLA and PA complexes

The charge-transfer complexes, [(4BAAN)(Iodine)] (brown), [(4-BAAN)(DDQ)] (red), [(4-BAAN)(TCNQ)] (yellow crystal), [(4BAAN)(CLA)] (yellow crystal), and [(4BAAN)(PA)] (yellow crystal), were prepared by mixing 1 mmol of the donor in chloroform ( 10 ml ) with 1 mmol of each of the acceptors, $\mathrm{I}_{2}, \mathrm{DDQ}$, TCNQ, CLA, and PA, in 10 ml of the same solvent with constant stirring for about 10 min . The solutions were allowed to evaporate slowly at a room temperature, the solids filtered and washed several times with little amounts of solvent, and dried under vacuum over anhydrous calcium chloride.

## [4-Morpholino-N-allyl-1.8-naphthalimide]- $I_{2}$, $D D Q, T C N Q, C L A$ and $P A$ complexes:

The charge-transfer complexes, [(4MAN)(Iodine)] (brown), [(4-MAN)(DDQ)] (red), $\left[(4-\mathrm{MAN})(\mathrm{TCNQ})_{2}\right] \quad$ (green), [(4-MAN)(CLA)] (red), and [(4-MAN)(PA)] (yellow), were prepared by mixing 1 mmol of the donor in chloroform (10 ml ) with 1 mmol of each of the acceptors, $\mathrm{I}_{2}, \mathrm{DDQ}$, TCNQ, CLA, and PA, in 10 ml of the same solvent with constant stirring for about 10 min . The precipitate, formed in each of the cases, was filtered off immediately and washed several times with minimum amounts of chloroform, and dried under vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$.

## [4-Piperdino-N-allyl-1.8naphthalimide]- $I_{2}, D D Q$, TCNQ, CLA, and PA complexes

The charge-transfer complexes, [(4PAN)(Iodine)] (brown), [(4-PAN)(DDQ)] (red), $\left[(4-\mathrm{PAN})(\mathrm{TCNQ})_{2}\right] \quad$ (yellow), $\quad[(4-\mathrm{PAN})(\mathrm{CLA})]$ (red), and [(4-PAN)(PA)] (yellow), were prepared by mixing 1 mmol of the donor in chloroform (10 ml ) with 1 mmol of each of the f acceptors, $\mathrm{I}_{2}, \mathrm{DDQ}, \mathrm{TCNQ}, \mathrm{CLA}$, and PA, in 10 ml of the same solvent with constant stirring for about 10 min. The precipitate, formed in each of the cases, was filtered off immediately and washed several times with minimum amounts of chloroform, and dried under vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$.
> [4-Methylamino- N -allyl-1.8naphthalimide]- $I_{2}$, DDQ, TCNQ, CLA, and PA complexes

The charge-transfer complexes, [(4MAAN)(Iodine)] (brown), [(4-MAAN)(DDQ)] (red), [(4-MAAN)(TCNQ)] (yellow), [(4MAAN)(CLA)] (yellow), and [(4-MAAN)(PA)] (red), were prepared by mixing 1 mmol of the donor in chloroform ( 10 ml ) with 1 mmol of each of the acceptors, $I_{2}$, DDQ, TCNQ, CLA, and PA, in 10 ml of the same solvent with constant stirring for about 10 min . The precipitate, formed in each of the cases, was filtered off immediately and washed several times with minimum amounts of chloroform, and dried under vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$.

## [4-Propyloxy- N -allyl-1.8-naphthalimide]- $I_{2}, ~ D D Q$,

 TCNQ, CLA, and PA complexesThe charge-transfer complexes, [(4POAN)(Iodine)] (brown), [(4-POAN)(DDQ)] (red), [(4-POAN)(TCNQ)] (blue), [(4POAN)(CLA)] (yellow), and [(4-POAN)(PA)] (yellow), were prepared by mixing 1 mmol of the donor in chloroform $(10 \mathrm{ml})$ with 1 mmol of each of the acceptors, $\mathrm{I}_{2}, \mathrm{DDQ}, \mathrm{TCNQ}$, CLA, and PA, in 10 ml of the same solvent with constant stirring for about 10 min . The precipitate, formed in each of the cases, was filtered off immediately and washed several times with minimum amounts of chloroform, and dried under vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$.

## Instrumentation and physical measurements

The electronic spectra of donors, acceptors, and the respective CT complexes were recorded in the spectral region of $200-800 \mathrm{~nm}$ using a Jenway 6405 Spectrophotometer with quartz cells, 1.0 cm path in length. Photometric titration was performed at $25{ }^{\circ} \mathrm{C}$ for the reactions of the donors with the acceptors in chloroform, as follows: the concentration of the donors in the reaction mixtures was kept fixed at $5.0 \times 10^{-4} \mathrm{M}$, while the concentration of the acceptors was changed over a wide range between $\mathrm{X} \times 10^{-4}$ and $\mathrm{Y} \times 10^{-4} \mathrm{M}$. These produced solutions with donor/acceptor molar ratios, varying from $1: 0.25$ to $1: 4.00$.

FTIR measurements ( KBr discs) of the donors, acceptor and CT complexes were carried out on a Bruker FT-IR spectrophotometer ( $400-4000 \mathrm{~cm}^{-1}$ ). ${ }^{1}$ HNMR spectra were obtained on Varian Gemini 200 MHz spectrometer. ${ }^{1} \mathrm{HNMR}$ data are expressed in parts per million ( ppm ), referenced internally to the residual proton impurity in DMSO (dimethylsulfoxide, $\mathrm{d}_{6}$ ) as a solvent, and reported as chemical shift ( $\mathrm{m}=$ multiplet and $\mathrm{s}=$ singlet; $\mathrm{br}=$
broad). The complex compositions were confirmed by the mass spectra at 70 eV using AEI MS 30 mass spectrometer. We carried out the thermal analysis (TGA \& DTG) out under nitrogen atmosphere at heating rate of $10 \mathrm{C} / \mathrm{min}$ using a Shimadzu TGA-50H thermal analyzers.

## RESULTS AND DISCUSSION

The results of the elemental analysis for all CT complexes are listed in Table 1. The data shows that those values are in good agreement with the calculated ones, and the composition of the CT complexes is matched with the molar ratios, exhibited trough the photometric titration, occurring between donors and acceptors ( $\sigma$ - and $\pi$ acceptors).

Table 1. Elemental analysis CHN and physical parameters data of the CT-complexes, formed from the reaction of the 4BAAN, 4MAN, 4PAN, 4MAAN, and 4POAN with iodine, DDQ, TCNQ, CLA, and PA.

| Complexes (FW) | Mwt | C\% |  | H\% |  | N\% |  | Physical data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Found | Calc. | Found | Calc. | Found | Calc. | Color | mp ( ${ }^{\circ} \mathrm{C}$ ) |
| $[(4 \mathrm{BAAN})] \mathrm{I}_{2}$ | 562 | 40.32 | 40.57 | 3.50 | 3.56 | 4.88 | 4.98 | Brown | 95 |
| [(4BAAN)(DDQ)] | 535 | 60.23 | 60.56 | 3.56 | 3.73 | 8.87 | 8.97 | Red | 209 |
| [(4BAAN)(TCNQ)] | 512 | 72.19 | 72.61 | 4.56 | 4.68 | 16.25 | 16.40 | Yellow | 213 |
| [(4BAAN)(CLA)] | 517 | 57.85 | 58.02 | 4.18 | 4.25 | 5.39 | 5.41 | Yellow | 198 |
| [(4BAAN)(PA)] | 537 | 55.46 | 55.86 | 4.11 | 4.28 | 12.66 | 13.03 | Yellow | 168 |
| [(4MAN) $\mathrm{I}_{2}$ | 576 | 39.28 | 39.59 | 2.98 | 3.12 | 4.78 | 4.86 | Brown | 67 |
| [(4MAN)(DDQ)] | 549 | 58.94 | 59.01 | 3.19 | 3.46 | 10.09 | 10.20 | Red | 236 |
| [(4MAN)(TCNQ $\left.)_{2}\right]$ | 731 | 70.19 | 70.63 | 3.48 | 3.56 | 18.98 | 19.16 | Green | 223 |
| [(4MAN)(CLA)] | 531 | 56.31 | 56.49 | 3.68 | 3.76 | 5.09 | 5.27 | Red | 216 |
| [(4MAN)(PA)] | 551 | 54.12 | 54.44 | 3.77 | 3.81 | 12.56 | 12.70 | Yellow | 184 |
| [(4PAN) $\mathrm{I}_{2}$ | 574 | 41.76 | 41.81 | 3.29 | 3.48 | 4.78 | 4.88 | Brown | 97 |
| [(4PAN)(DDQ)] | 547 | 61.11 | 61.42 | 3.78 | 3.84 | 10.11 | 10.23 | Red | 165 |
| [(4PAN)(TCNQ $\left.)_{2}\right]$ | 729 | 72.32 | 72.47 | 3.65 | 3.84 | 18.98 | 19.21 | Yellow | 221 |
| [(4-PAN)(CLA)] | 529 | 58.73 | 58.98 | 4.08 | 4.16 | 5.09 | 5.29 | Red | 199 |
| [(4PAN)(PA)] | 549 | 56.28 | 56.83 | 4.13 | 4.19 | 12.69 | 12.75 | Yellow | 175 |
| [(4MAAN) $\mathrm{I}_{2}$ | 520 | 36.88 | 36.93 | 2.60 | 2.69 | 5.29 | 5.38 | Brown | 102 |
| [(4MAAN)(DDQ)] | 493 | 58.32 | 58.41 | 2.78 | 2.84 | 11.23 | 11.36 | Red | 196 |
| [(4MAAN)(TCNQ)] | 470 | 71.39 | 71.49 | 3.99 | 4.04 | 17.75 | 17.87 | Yellow | 187 |
| [(4MAAN)(CLA)] | 475 | 55.09 | 55.58 | 3.29 | 3.37 | 5.75 | 5.89 | Yellow | 149 |
| [(4MAAN)(PA)] | 495 | 53.25 | 53.33 | 3.37 | 3.43 | 13.95 | 14.14 | Red | 166 |
| $[(4 \mathrm{POAN})] \mathrm{I}_{2}$ | 549 | 39.11 | 39.36 | 2.89 | 3.09 | 2.51 | 2.55 | Brown | 85 |
| [(4POAN)(DDQ)] | 522 | 59.38 | 59.77 | 3.16 | 3.25 | 7.95 | 8.04 | Red | 239 |
| [(4POAN)(TCNQ)] | 499 | 72.08 | 72.14 | 4.15 | 4.21 | 13.85 | 14.03 | Blue | 211 |
| [(4POAN)(CLA)] | 504 | 57.03 | 57.14 | 3.62 | 3.77 | 2.56 | 2.78 | Yellow | 166 |
| [(4POAN)(PA)] | 524 | 54.66 | 54.96 | 3.76 | 3.81 | 10.65 | 10.68 | Yellow | 163 |

## Electronic absorption spectra

The absorption UV/Vis spectra of the 1,8naphthalimide/iodine complexes were measured in $\mathrm{CHCl}_{3}$. The complexes are formed with donors (4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN) by adding X ml of $5.0 \times 10^{-4} \mathrm{M}\left(\mathrm{I}_{2}\right)(\mathrm{X}=0.25,0.50$, $0.75,1.00,1.50,2.00,2.50$ and 3.00 ml ) to 1.00 ml of $5.0 \times 10^{-4} \mathrm{M}$ of each donor. The volume of the
mixtures in each case was adjusted to 10 ml in each donor. The donor concentration in the reaction mixtures was kept fixed at $0.5 \times 10^{-4} \mathrm{M}$, while the iodine concentration varied in the range between $0.125 \times 10^{-4} \quad \mathrm{M}$ and $1.50 \times 10^{-4} \mathrm{M}$. These concentrations produced base to $\mathrm{I}_{2}$ ratios within the range between $1: 0.25$ and $1: 3.00$. The electronic absorption spectra of the reactants of $\mathrm{I}_{2}$ and 4BAAN, 4MAN, 4PAN, 4MAAN, and 4POAN
mixed with $\mathrm{CHCl}_{3}$ in a volumetric ratio of $1: 1$ are

(A)
(C)
(E)
show detected absorption bands. These bands are assigned at $(335,385$ and 505 nm$)$, ( 390 and 505 $\mathrm{nm})$, (410 and 510 nm ), (425 and 500 nm ), and at (360 and 500 nm ) due to the CT complex, formed in the reaction of $4 \mathrm{BAAN}, 4 \mathrm{MAN}, 4 \mathrm{PAN}$,
shown in Figures (2A-E), respectively. The spectra

(D)


Fig. 2. Electronic absorption spectra of (A): 4BAAN/Iodine; (B): 4MAN/Iodine; (C): 4PAN/Iodine; (D): 4MAAN/Iodine; and (E): 4POAN/Iodine complexes in $\mathrm{CHCl}_{3}$, respectively. (a) $=\operatorname{donor}\left(1.0 \times 10^{-4} \mathrm{M}\right),(\mathrm{b})=\operatorname{acceptor}\left(1.0 \times 10^{-4} \mathrm{M}\right),(\mathrm{c})=$ CT-complex, $(\mathrm{d})=$ CT-complex after one day.

4MAAN, and 4POAN with $\mathrm{I}_{2}$ in solvent chloroform, respectively. The photometric titration curves were obtained adhering to the molar ratio method [27], by plotting of the absorbance against the volume of the iodine $\sigma$-acceptor added. The
equivalence points, shown on these curves, clearly indicate that the CT-complex, formed between the donor (4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN) and the iodine, is in a $1: 1$ ratio. The formation of $1: 1$ complex was strongly supported by elemental analysis, photometric titrations and far infrared spectra. The spectrophotometric data are employed to calculate the equilibrium constant $\left(\mathrm{K}_{\mathrm{CT}}\right)$ and the molar absorbance $\left(\varepsilon_{\mathrm{CT}}\right)$ for donor- $\mathrm{I}_{2}$ complexes in chloroform using the $1: 1$ modified Benesi-Hildebrand equation [28]. This equation is based on the assumptions of 1:1 (Acceptor-Donor) complex formation. Calculations are based on the data obtained for, $\mathrm{C}^{\mathrm{o}}{ }_{\mathrm{D}}$ of (4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN), $\mathrm{C}_{\mathrm{A}}^{\mathrm{o}}$ of $\mathrm{I}_{2}, \mathrm{C}_{\mathrm{A}^{\mathrm{o}}}+\mathrm{C}^{\mathrm{O}}{ }_{\mathrm{D}}$ and $\mathrm{C}^{\mathrm{O}}{ }_{\mathrm{A}} \mathrm{X}$ $\mathrm{C}_{\mathrm{D}}^{\mathrm{o}} / \mathrm{A}$ in $\mathrm{CHCl}_{3}$. When the $\mathrm{C}_{\mathrm{A}}^{\mathrm{o}} \mathrm{XC}^{\mathrm{o}}{ }_{\mathrm{D}} / \mathrm{A}$ values for each donor are plotted against the corresponding $\mathrm{C}_{\mathrm{A}}^{\mathrm{o}}+\mathrm{C}^{\mathrm{o}}{ }_{\mathrm{D}}$ values, the straight lines are obtained with a slope of $1 / \varepsilon$ and intercept of $1 / K \varepsilon$ for the reactions in $\mathrm{CHCl}_{3}$. Both, the equilibrium constant $(\mathrm{K})$ and the molar absorbance ( $\varepsilon$ ) for all CT complexes, are given in Table 2. The value trend in this table reveals high values of both, the equilibrium constant (K) and the molar absorbance ( $\varepsilon$ ). This high value of (K) reflects the high stability of the iodine complexes because of the expected high donation of the 4-butylamino for (4BAAN), the 4morpholino for (4MAN), the 4-piperdino for (4PAN), the 4-methylamino for (4MAAN), and the 4-propyloxy for (4POAN) N -allyl derivatives of 1.8-naphthalimide (donor).

The CT transition energies of CT- complexes are used to estimate the ionization potential of (4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN) using the empirical equations, derived by Aloisi and Pignataro [29]. The values obtained are listed in Table 2.

The electronic absorption spectra of the free donors, 4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN with DDQ in chloroform along with those of the formed $1: 1 \mathrm{CT}$ complexes, are shown on Figures (3 A-E), respectively. The spectra demonstrate that the formed CT-complexes show new absorption bands which do not exist in the spectra of the reactants. These bands are attributed to charge-transfer complexes formation and can be assigned as follows: 360 and 430 nm for 4BAAN/DDQ, 360 and 390 nm for $4 \mathrm{MAN} / \mathrm{DDQ}$, 357 and 410 nm for 4PAN/DDQ, 355 and 425 nm for 4MAAN, and (355 and 410 nm ) for 4POAN/DDQ, respectively. In the measurements the concentration of the donors (4BAAN, 4MAN, 4PAN) was kept fixed at $0.25 \times 10^{-4} \mathrm{M}$ while the concentration of the acceptor varied in the range of
$0.0625 \times 10^{-4} \mathrm{M}$ to $0.75 \times 10^{-4} \mathrm{M}$. The concentration of the other donors (4MAAN and 4POAN) was kept fixed at $0.50 \times 10^{-4} \mathrm{M}$ while the concentration of the acceptor varied in the range of $0.125 \times 10^{-4} \mathrm{M}$ to $1.50 \times 10^{-4} \mathrm{M}$. Accordingly, the CT-complexes, formed upon the reaction of 4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN as donors with $\pi$ acceptor DDQ under investigation, have the general formula of [(donor)(acceptor)]. The 1:1 modified Benesi-Hildebrand equation [28] was used as shown in the previous sections in the calculation of the values of the equilibrium constant, $K$, and the molar absorbance, $\varepsilon$. While plotting the $C_{a}^{o} \cdot C_{d}^{o} / A$ values against the $\mathrm{C}_{\mathrm{a}}^{\mathrm{o}}+\mathrm{C}_{\mathrm{d}}^{\mathrm{o}}$ values for the donors/DDQ, straight lines were obtained with a slope of $1 / \varepsilon$ and an intercept of $1 / K \varepsilon$. The obtained values of both K and $\varepsilon$, associated with these complexes, are given in Table 3.
Figures 4 (A-E) show the electronic absorption spectra of the reactant donors, 4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN, with TCNQ in chloroform along with the $1: 1$ molar ratio of donor: acceptor with 4BAAN, 4MAAN, and 4POAN, while the molar ratio for donor: acceptor is $1: 2$ for the donors of 4 PAN and 4 MAAN . The spectra demonstrate that the formed CT complexes show new absorption bands at 410 and 455 nm for the 4BAAN/TCNQ, 410 nm for the $4 \mathrm{MAN} / \mathrm{TCNQ}, 405$ nm for the $4 \mathrm{PAN} / \mathrm{TCNQ}, 405$ and 450 nm for the 4MAAN/TCNQ, and ( 355 and 405 nm ) for the 4POAN/TCNQ, respectively. The concentration of donors (4BAAN and 4MAN) in these measurements was kept fixed at $0.50 \times 10^{-4} \mathrm{M}$ while the concentration of the TCNQ varied in the range of $0.125 \times 10^{-4} \mathrm{M}$ to $1.50 \times 10^{-4} \mathrm{M}$. The concentration of 4PAN donor was kept fixed at $0.125 \times 10^{-4} \mathrm{M}$ while the concentration of the TCNQ varied in the range of $0.031 \times 10^{-4} \mathrm{M}$ to $0.50 \times 10^{-4} \mathrm{M}$. In the case of the donors (4MAAN and 4POAN) the concentration was kept fixed at $0.25 \times 10^{-4} \mathrm{M}$ while the concentration of the TCNQ varied in the range of $0.0625 \times 10^{-4} \mathrm{M}$ to $0.75 \times 10^{-4} \mathrm{M}$. Accordingly, the CT complexes, formed upon the reaction of 4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN, being the donors with TCNQ under investigation, have the formula of [(4BAAN)(TCNQ)], $\left[(4 \mathrm{MAN})(\mathrm{TCNQ})_{2}\right], \quad\left[(4 \mathrm{PAN})(\mathrm{TCNQ})_{2}\right]$, [4MAAN)(TCNQ)] and [(4POAN)( TCNQ)] CT complexes. The $1: 1$ modified Benesi-Hildebrand equation [28] was used to calculate the values of the equilibrium constant, $\mathrm{K}\left(1 \mathrm{~mol}^{-1}\right)$, and the molar absorptivity, $\varepsilon \quad\left(1 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$, for the $[(4 \mathrm{BAAN})(\mathrm{TCNQ})]$, the $[4 \mathrm{MAAN})(\mathrm{TCNQ})]$ and
the [(4POAN)(TCNQ)] CT complexes. The corresponding spectral parameters for the complexes of $\left[(4 \mathrm{MAN})(\mathrm{TCNQ})_{2}\right]$ and $\left[(4 \mathrm{PAN})(\mathrm{TCNQ})_{2}\right]$,were calculated using the known El-Kourashy equation [30] for 1:2 complexes.
(A)

(C)

(E)


Here, $\mathrm{C}_{\mathrm{A}}^{\mathrm{o}}$ and $\mathrm{C}^{\mathrm{o}}{ }_{\mathrm{D}}$ are the initial concentration of the TCNQ and the donors, respectively, while A is the absorbance at the mentioned CT bands. Straight lines are obtained with a slope of $1 / \varepsilon$ and intercept of $1 / K \varepsilon$ when plotting the values of $\mathrm{C}^{\circ}{ }_{\mathrm{A}} \mathrm{C}^{\circ}{ }_{\mathrm{D}} \mathrm{I} / \mathrm{A}$ against the $\left(\mathrm{C}_{\mathrm{A}}{ }^{+}+\mathrm{C}^{\circ}{ }_{\mathrm{D}}\right)$ values, and the
(B)

(D)


Fig. 3. Electronic absorption spectra of (A): [(4BAAN)(DDQ)];(B): [(4MAN)(DDQ)]; (C): [(4PAN)(DDQ)]; (D): [4MAAN)(DDQ)]; and (E): [(4POAN)(DDQ)] CT complexes in $\mathrm{CHCl}_{3}$. (a) $=$ donor $\left(1.0 \times 10^{-4} \mathrm{M}\right)$, $(b)=$ acceptor $\left(1.0 \times 10^{-4} \mathrm{M}\right)$, and (c) = CT-complex.
values of $\left(\mathrm{C}_{\mathrm{A}}^{0}\right)^{2} \mathrm{C}_{\mathrm{D}}^{0} / \mathrm{A}$ versus the $\mathrm{C}_{\mathrm{A}}^{0}\left(\mathrm{C}_{\mathrm{A}}^{0}+4 \mathrm{C}_{\mathrm{D}}^{\mathrm{D}}\right)$ values. Table 4 shows the calculated values of the


The electronic absorption spectra of the reactant donors of 4BAAN, 4MAN, 4PAN, 4MAAN, and 4POAN with CLA in $\mathrm{CH}_{3} \mathrm{OH}$ along with those of the formed 1:1 CT complexes are shown on Figure 5. The
spectroscopic data, containing the $\varepsilon, \mathrm{K}$ and $\mathrm{I}_{\mathrm{p}}$.

## (B)


(D)


Fig. 4. Electronic absorption spectra of (A): [(4BAAN)(TCNQ)]; (B): [(4MAN) (TCNQ) ${ }_{2}$; (C): [(4PAN) $\left.(\mathrm{TCNQ})_{2}\right] ; \quad$ (D): $\quad[(4 \mathrm{MAAN})(\mathrm{TCNQ})]$; and $\quad(\mathrm{E})$ : [(4POAN)(TCNQ)] CT complexes in $\mathrm{CHCl}_{3}$. (a) $=$ donor $\left(1.0 \times 10^{-4} \mathrm{M}\right),(b)=\operatorname{acceptor}\left(1.0 \times 10^{-4} \mathrm{M}\right)$, and $(\mathrm{c})=$ CTcomplex
spectra demonstrate that the formed CT complexes show new absorption bands as follows: at 320 and 525 nm for the 4BAAN/CLA, 310 and 520 nm for the 4MAN/CLA, 315 and 535 nm for the 4PAN/CLA,
general formula of [(donor)(acceptor)]. The 1:1 modified Benesi-Hildebrand equation was used as shown in the previous sections for the calculation of the values of the equilibrium constant, K , and the molar absorptivity, $\varepsilon$. Straight lines are obtained with
(A)

(C)

(E)

a slope of $1 / \varepsilon$ and an intercept of $1 / K \varepsilon$. Table 5 shows the obtained values of both, K and $\varepsilon$, associated with these complexes.
(B)

(D)


Fig. 5. Electronic absorption spectra of (A): [(4BAAN)(CLA)]; (B): [(4MAN) (CLA)]; (C): [(4PAN)(CLA)]; (D): [(4MAAN)(CLA)]; and (E): [(4POAN)(CLA)] CT complexes in $\mathrm{CH}_{3} \mathrm{OH}$. (a) = donor $\left(1.0 \times 10^{-4} \mathrm{M}\right),(\mathrm{b})=$ acceptor $\left(1.0 \times 10^{-4} \mathrm{M}\right)$, and $(\mathrm{c})=$ CTcomplex

Table 2: Spectrophotometric results for (A): 4BAAN/iodine; (B): 4MAN/iodine; (C): 4PAN/iodine; (D): 4MAAN/iodine; and (E): 4POAN/iodine CT complexes.

| CT- <br> complexes | $\lambda_{\max }$ <br> $(\mathrm{nm})$ | $\mathrm{E}_{\mathrm{CT}}$ <br> $(\mathrm{eV})$ | K <br> $\left(1 . \mathrm{mol}^{-1}\right)$ | $\varepsilon_{\max }$ <br> $\left(1 . \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}\right)$ | $\mathrm{I}_{\mathrm{p}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 385 | 3.23 | $2.06 \times 10^{4}$ | $2.36 \times 10^{4}$ | 7.37 |
| B | 390 | 3.19 | $2.22 \times 10^{4}$ | $2.85 \times 10^{4}$ | 7.35 |
| C | 410 | 3.03 | $2.19 \times 10^{4}$ | $2.06 \times 10^{4}$ | 7.23 |
| D | 425 | 2.93 | $2.12 \times 10^{4}$ | $2.74 \times 10^{4}$ | 7.16 |
| E | 360 | 3.45 | $2.07 \times 10^{4}$ | $4.96 \times 10^{4}$ | 7.53 |

Table 3: Spectrophotometric results for (A): [(4BAAN)(DDQ)]; (B): [(4MAN)(DDQ)]; (C): [(4PAN)(DDQ)]; (D): [(4MAAN)(DDQ)]; and (E): [(4POAN)(DDQ)] CT complexes.

| CT complexes | $\lambda_{\max }$ <br> $(\mathrm{nm})$ | $\mathrm{E}_{\mathrm{CT}}$ <br> $(\mathrm{eV})$ | K <br> $\left(1 . \mathrm{mol}^{-1}\right)$ | $\varepsilon_{\max }$ <br> $\left(1 . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right)$ | $\mathrm{I}_{\mathrm{p}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 430 | 2.89 | $4.30 \times 10^{4}$ | $3.34 \times 10^{4}$ | 7.14 |
| B | 390 | 3.18 | $4.15 \times 10^{4}$ | $4.97 \times 10^{4}$ | 7.34 |
| C | 410 | 3.03 | $4.08 \times 10^{4}$ | $4.97 \times 10^{4}$ | 7.23 |
| D | 425 | 2.93 | $2.35 \times 10^{4}$ | $3.26 \times 10^{4}$ | 7.16 |
| E | 410 | 3.03 | $2.49 \times 10^{4}$ | $0.816 \times 10^{4}$ | 7.23 |

Table 4: Spectrophotometric results for (A): [(4BAAN)(TCNQ)]; (B): [(4MAN)(TCNQ) $\left.)_{2}\right] ;$ (C): [(4PAN)(TCNQ) $\left.)_{2}\right]$; (D): [4MAAN)(TCNQ)]; and (E): [(4POAN)(TCNQ)] CT complexes.

| CT complexes | $\lambda_{\max }$ <br> $(\mathrm{nm})$ | $\mathrm{E}_{\mathrm{CT}}$ <br> $(\mathrm{eV})$ | K <br> $\left(\mathrm{l}^{\left.-\mathrm{mol}^{-1}\right)}\right.$ | $\varepsilon_{\max }$ <br> $\left(1 . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}\right)$ | $\mathrm{I}_{\mathrm{p}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 455 | 2.73 | $2.21 \times 10^{4}$ | $1.61 \times 10^{4}$ | 7.02 |
| B | 410 | 3.03 | $1.68 \times 10^{8}$ | $9.47 \times 10^{4}$ | 7.23 |
| C | 405 | 3.07 | $34.99 \times 10^{8}$ | $3.93 \times 10^{5}$ | 7.26 |
| D | 450 | 2.76 | $4.87 \times 10^{4}$ | $2.51 \times 10^{4}$ | 7.04 |
| E | 405 | 3.07 | $7.84 \times 10^{4}$ | $11.28 \times 10^{4}$ | 7.26 |

Table 5: Spectrophotometric results for (A): [(4BAAN)(CLA)]; (B): [(4MAN)(CLA)]; (C): [(4PAN)(CLA)]; (D): [4MAAN) (CLA)]; and (E): [(4POAN)(CLA)] CT complexes.

| CT complexes | $\lambda_{\text {max }}$ <br> $(\mathbf{n m})$ | $\mathbf{E}_{\mathbf{C T}}$ <br> $(\mathbf{e V})$ | $\mathbf{K}$ <br> $\left(\mathbf{1 . m o \mathbf { m } ^ { \mathbf { 1 } } )}\right.$ | $\boldsymbol{\varepsilon}_{\text {max }}$ <br> $\left(\mathbf{l . m o l}^{-1} \cdot \mathbf{c m}^{\mathbf{- 1}} \mathbf{)}\right.$ | $\mathbf{I}_{\mathbf{p}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A}$ | 525 | 2.73 | $10.61 \times$ <br> $10^{4}$ | $0.996 \times 10^{4}$ | 7.02 |
| $\mathbf{B}$ | 520 | 2.39 | 10.88 X <br> $10^{4}$ | $0.389 \times 10^{4}$ | 6.79 |
| $\mathbf{C}$ | 535 | 2.32 | $3.15 \times 10^{4}$ | $0.901 \times 10^{4}$ | 6.74 |
| $\mathbf{D}$ | 530 | 2.34 | $7.83 \times 10^{4}$ | $0.470 \times 10^{4}$ | 6.75 |
| $\mathbf{E}$ | 520 | 2.39 | $21.36 \times$ <br> $10^{4}$ | $0.692 \times 10^{4}$ | 6.79 |

The electronic absorption spectra of the donors, 4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN with PA in $\mathrm{CHCl}_{3}$ along with those of the formed 1:1 CT complexes are shown on Figure 6. The spectra demonstrate that the formed CT complexes show new absorption bands as follows: 335 and 425 nm for the 4BAAN/PA, 340 and 400 nm for
the 4MAN/ PA, 330 and 410 nm for the 4PAN/PA, 335 and 425 nm for the 4MAAN/PA, and 360 and 430 nm for the $4 \mathrm{POAN} / \mathrm{PA}$. In these measurements the concentration of the donors (4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN) was kept fixed at $0.25 \times 10^{-4} \mathrm{M}$ while the concentration of the PA was in the range of $0.0625 \times 10^{-4} \mathrm{M}$ to $0.75 \times 10^{-4} \mathrm{M}$.


(A)

(C)

(E)

Accordingly, the CT-complexes, formed upon the reaction of 4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN, being the donors with PA under investigation, have the general formula of
[(donor)(acceptor)]. The 1:1 modified BenesiHildebrand equation was used in the calculation of the values of the equilibrium constant, K , and the molar absorptivity, $\varepsilon$. The values $\mathrm{C}_{\mathrm{a}}^{0}$ and $\mathrm{C}_{\mathrm{d}}^{0}$ are
the initial concentrations of the PA and the donors of 4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN, respectively, while A is the absorbance at the CT bands. A straight line with a slope of $1 / \varepsilon$ and intercept of $1 / K \varepsilon$ is obtained when plotting the values of the $\mathrm{C}_{a}^{o} \cdot \mathrm{C}_{\mathrm{d}}^{o / \mathrm{A}}$ against the $\mathrm{C}_{\mathrm{a}}^{o+} \mathrm{C}_{\mathrm{d}}^{o}$ values for
each donor. The obtained values of both, K and $\varepsilon$, associated with these complexes, are given in Table 6. These complexes show high values of both the formation constants ( K ) and the molar absorptivity $(\varepsilon)$. These high values of $K$ confirm the expected high stabilities of the formed CT complexes.

Table 6: Spectrophotometric results for (A): [(4BAAN)(PA)]; (B): [(4MAN)(PA)]; (C): [(4PAN)(PA)]; (D): [(4MAAN)(PA)]; and (E): [(4POAN)(PA)] CT complexes.

| $\mathbf{C T}$ complexes | $\lambda_{\max }$ <br> $(\mathbf{n m})$ | $\mathbf{E}_{\mathbf{C T}}$ <br> $(\mathbf{e V})$ | $\mathbf{K}$ <br> $\left(\mathbf{l . m o l}^{\mathbf{- 1}}\right)$ | $\varepsilon_{\text {max }}$ <br> $\left(\mathbf{l . m o l}^{-1} . \mathbf{. m}^{\mathbf{- 1}}\right)$ | $\mathbf{I}_{\mathbf{p}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A}$ | 425 | 2.93 | $4.32 \times 10^{4}$ | $3.75 \times 10^{4}$ | 7.16 |
| $\mathbf{B}$ | 400 | 3.11 | $4.21 \times 10^{4}$ | $4.73 \times 10^{4}$ | 7.29 |
| $\mathbf{C}$ | 410 | 3.03 | $4.50 \times 10^{4}$ | $4.21 \times 10^{4}$ | 7.23 |
| $\mathbf{D}$ | 425 | 2.93 | $4.44 \times 10^{4}$ | $3.98 \times 10^{4}$ | 7.16 |
| $\mathbf{E}$ | 430 | 2.90 | $5.35 \times 10^{4}$ | $2.27 \times 10^{4}$ | 7.14 |

## Infrared spectra

The FTIR spectra of 4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN and the respective CT complexes of $\quad[(4 \mathrm{BAAN})] \mathrm{I}_{2}, \quad[(4 \mathrm{MAN})] \mathrm{I}_{2}$, $[(4 \mathrm{PAN})] \mathrm{I}_{2},[(4 \mathrm{MAAN})] \mathrm{I}_{2}$ and $[(4 \mathrm{POAN})] \mathrm{I}_{2}$ were recorded at KBr and data are listed in Table 7. As expected, the band characteristics for the 4BAAN, 4MAN, 4PAN, 4MAAN and 4POAN units in [(donor)]I ${ }_{2}$ CT- complexes are shown with small changes in band intensities and frequency values, indicating the formation of the charge-transfer complexes.

The far infrared spectra of [(4BAAN)] $I_{2}$, $[(4 \mathrm{MAAN})] \mathrm{I}_{2}$ and $[(4 \mathrm{POAN})] \mathrm{I}_{2}$ CT complexes were recorded from Nujol mulls, dispersed on polyethylene windows in the region of $50-300 \mathrm{~cm}^{-}$ ${ }^{1}$. The absence of the bands, characteristic for $\mathrm{I}_{3}{ }^{-}$ in the spectra show the formation of the [(donor) $]_{2}$ CT- complexes.

The infrared characteristic bands of the CT complexes, formed from the interaction of the 1.8naphthalimide with (acceptor $=\mathrm{DDQ}, \mathrm{TCNQ}$, CLA and PA), are assignments and are given in Tables ( 8 to 11). These assignments are based on the comparison between the spectra of CT complexes and the spectra of the reactants, the donors and the acceptors. The spectra of the reaction products contain the main bands for both reactants, and this strongly supports the formation of the CT-complexes. However, the bands of the acceptors and the donor in the spectra of 1,8 naphthalimide CT complexes show some changes in the intensities and in some cases show small shifts in the frequency values, compared to those of the free acceptors and the donor. This could be understood based on the symmetry and the
electronic structure changes in both, the acceptors and the donors in the formed CT-complexes, compared to those of the free molecules.

The comparison between the important IR spectral bands of the free donors of N -allyl derivatives of 1,8 -naphthalimide and the $\pi$ acceptor DDQ and the corresponding bands, appearing in the IR spectra of the prepared CT complexes, shows strong patterns due to the corresponding radical anions, DDQ $^{-}$. Essentially, the vibration frequencies of the $\mathrm{C} \equiv \mathrm{N}$ groups for DDQ, observed at 2250 and $2231 \mathrm{~cm}^{-1}$, are shifted to lower wavenumbers of $2213-2237 \mathrm{~cm}^{-1}$ in the corresponding IR spectra of its CT complexes with 1.8 -naphthalimide (4BAAN, 4MAN, 4PAN, 4MAAN, and 4POAN). Also, the stretching vibration frequencies of the $\mathrm{C}=\mathrm{O}$ groups, appearing at $1673 \mathrm{~cm}^{-1}$ in the IR spectrum of free DDQ, is are displayed at $1635-1655 \mathrm{~cm}^{-1}$ and $1678-1698 \mathrm{~cm}^{-1}$ in their complexes. Furthermore, the bands belonging to the $\mathrm{C}-\mathrm{Cl}$ vibrations which appeared at 800 and $720 \mathrm{~cm}^{-1}$ in the IR spectra of the free DDQ , exhibit a high shift in the corresponding IR spectra of the CT complexes (at 894-885 and 744-783 cm ${ }^{-1}$ ). Accordingly, these interpretation led to the deduction that the CT complexation occurs as $\pi-\pi^{*}$ (aromatic ring of donor to aromatic ring of acceptor), see Scheme 1 . The IR spectral bands of the [(4BAAN)(TCNQ)], [(4MAN)(TCNQ) $)_{2}$ ], $\left[(4 \mathrm{PAN})(\mathrm{TCNQ})_{2}\right], \quad[(4 \mathrm{MAAN})(\mathrm{TCNQ})]$ and the [(4POAN)( TCNQ)] solid CT complexes are given in Table 9. The structures of the 1,8- naphthalimide/TCNQ CT complexes,

Table 7: Infrared frequencies ${ }^{(\mathrm{a})}\left(\mathrm{cm}^{-1}\right)$ and tentative assignments for (A): 4BAAN; (B): 4MAN; (C): 4PAN; (D): 4MAAN; (E): 4POAN; (F): 4BAAN/iodine; (G): 4MAN/iodine; (H): 4PAN/iodine; (I): 4MAAN/iodine; and (J): 4POAN/iodine complexes in $\mathrm{CHCl}_{3}$, respectively.

| A | B | C | D | E | [(Donors)] $\mathrm{I}_{2}$ |  |  |  |  | Assignments ${ }^{(\mathbf{b})}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | F | G | H | I | J |  |
| 3382 s | -- | -- | 3391 vs | $\begin{aligned} & 3424 \\ & \text { w,br } \end{aligned}$ | $\begin{aligned} & \hline 3391 \mathrm{w} \\ & 3336 \mathrm{w} \end{aligned}$ |  | -- | $\begin{gathered} \hline 3389 \mathrm{~s} \\ 3321 \mathrm{w} \end{gathered}$ | 3424 br | $v(\mathrm{O}-\mathrm{H}) ; \mathrm{H}_{2} \mathrm{O}$ of $\mathrm{KBr} v(\mathrm{~N}-\mathrm{H})$ |
| 3075 w | 3072 w | $\begin{aligned} & 3071 \mathrm{w} \\ & 3010 \mathrm{w} \\ & \hline \end{aligned}$ | 3085 vw | 3078 w | $\begin{gathered} 3079 \\ \text { vw } \\ \hline \end{gathered}$ | -- | 3076 w | 3058 vw | 3078 w | $v_{\mathrm{as}}(\mathrm{C}-\mathrm{H})$; aromatic <br> $v(\mathrm{C}-\mathrm{H}) ; \mathrm{CH}_{2}+\mathrm{CH}_{3}$ |
| $2955 \mathrm{~ms}$ $2867 \text { m }$ | $\begin{gathered} 2952 \mathrm{~m} \\ 2895 \mathrm{w} \\ 2846 \mathrm{~ms} \end{gathered}$ | 2934 ms 2850 m 2812 m | $\begin{aligned} & 2989 \mathrm{vw} \\ & 2930 \mathrm{w} \\ & 2851 \mathrm{vw} \end{aligned}$ | $\begin{gathered} 2964 \mathrm{~ms} \\ 2938 \mathrm{w} \\ 2876 \mathrm{mw} \end{gathered}$ | $\begin{aligned} & 2923 \mathrm{~m} \\ & 2856 \mathrm{w} \end{aligned}$ | $\begin{gathered} 2925 \mathrm{vs} \\ 2854 \mathrm{~s} \end{gathered}$ | $\begin{aligned} & 2925 \mathrm{~ms} \\ & 2853 \mathrm{~m} \end{aligned}$ | 2929 m | $\begin{gathered} 2962 \mathrm{~ms} \\ 2928 \mathrm{~ms} \\ 2874 \mathrm{w} \end{gathered}$ | $\begin{gathered} v_{\mathrm{s}}(\mathrm{C}-\mathrm{H}) \\ \mathrm{vas}_{\mathrm{as}}(\mathrm{C}-\mathrm{H}) \end{gathered}$ |
| $\begin{gathered} \hline 1682 \mathrm{~s} \\ 1642 \mathrm{vs} \end{gathered}$ | $\begin{gathered} \hline 1690 \mathrm{~s} \\ 1656 \mathrm{vs} \end{gathered}$ | $\begin{gathered} \hline 1697 \mathrm{~s} \\ 1652 \mathrm{vs} \end{gathered}$ | $\begin{aligned} & \hline 1681 \mathrm{~s} \\ & 1637 \mathrm{~s} \end{aligned}$ | $\begin{gathered} \hline 1697 \mathrm{~s} \\ 1659 \mathrm{vs} \end{gathered}$ | $\begin{aligned} & 1673 \mathrm{~s} \\ & 1608 \mathrm{~ms} \end{aligned}$ | $\begin{gathered} \hline 1741 \mathrm{~s} \\ 1699 \mathrm{~s} \\ 1627 \mathrm{vs} \end{gathered}$ | $\begin{gathered} \hline 1698 \mathrm{~ms} \\ 1656 \mathrm{~s} \end{gathered}$ | $\begin{aligned} & \hline 1682 \mathrm{~s} \\ & 1635 \mathrm{~s} \end{aligned}$ | $\begin{gathered} \hline 1696 \mathrm{~s} \\ 1658 \mathrm{vs} \end{gathered}$ | ) |
| $\begin{gathered} 1612 \\ \text { vw } \end{gathered}$ | $1588 \mathrm{~s}$ | $\begin{gathered} \hline 1590 \mathrm{~s} \\ 1512 \mathrm{~m} \end{gathered}$ | $\begin{gathered} \hline 1577 \mathrm{vs} \\ 1549 \mathrm{~s} \end{gathered}$ | $\begin{gathered} \hline 1590 \mathrm{~s} \\ 1514 \mathrm{~ms} \end{gathered}$ | 1580 vs | $\begin{aligned} & 1582 \mathrm{~ms} \\ & 1515 \mathrm{~m} \end{aligned}$ | $\begin{gathered} \hline 1582 \mathrm{~s} \\ 1514 \mathrm{~m} \end{gathered}$ | $\begin{gathered} \hline 1579 \mathrm{vs} \\ 1548 \mathrm{~s} \\ 1528 \mathrm{w} \end{gathered}$ | $\begin{gathered} \hline 1590 \mathrm{~s} \\ 1590 \mathrm{~s} \\ 1522 \mathrm{~ms} \end{gathered}$ | $(\mathrm{C}=\mathrm{C})$; aromatic |
| $\begin{aligned} & \hline 1577 \mathrm{vs} \\ & 1544 \mathrm{vs} \\ & 1470 \mathrm{~m} \\ & 1376 \mathrm{~s} \\ & \hline \end{aligned}$ | 1512 m 1448 m 1380 s | $\begin{aligned} & 1447 \mathrm{vw} \\ & 1452 \mathrm{mw} \\ & 1381 \mathrm{~ms} \end{aligned}$ | 1446 m 1418 m 1380 s | $\begin{gathered} 1461 \mathrm{~ms} \\ 1380 \mathrm{~s} \end{gathered}$ | $\begin{gathered} \hline 1550 \mathrm{~ms} \\ 1523 \mathrm{~s} \\ 1470 \mathrm{~ms} \\ 1376 \mathrm{~m} \\ \hline \end{gathered}$ | $\begin{aligned} & 1458 \mathrm{~ms} \\ & 1375 \mathrm{~ms} \end{aligned}$ | $\begin{gathered} 1459 \mathrm{~m} \\ 1423 \mathrm{w} \\ 1375 \mathrm{~s} \\ 1340 \mathrm{~m} \end{gathered}$ | $\begin{gathered} 1478 \mathrm{w} \\ 1451 \mathrm{w} \\ 1380 \mathrm{~s} \end{gathered}$ | $\begin{aligned} & 1460 \mathrm{~ms} \\ & 1422 \mathrm{~m} \\ & 1379 \mathrm{~s} \end{aligned}$ | $\delta(\mathrm{CH}) ; \mathrm{CH}$ def. $\delta(\mathrm{CH})$; aromatic |
| 1335 s 1294 ms 1247 s 1187 w 1143 s 1097 m | $\begin{gathered} 1342 \\ \mathrm{~ms} \\ 1238 \mathrm{~s} \\ 1179 \\ \mathrm{~ms} \\ 1118 \mathrm{~s} \\ 1078 \mathrm{~m} \end{gathered}$ | $\begin{gathered} 1235 \mathrm{~ms} \\ 1235 \mathrm{~s} \\ 1178 \mathrm{~m} \\ 1134 \mathrm{~m} \\ 1080 \mathrm{mw} \end{gathered}$ | $\begin{gathered} 1355 \mathrm{~ms} \\ 1299 \mathrm{~ms} \\ 1245 \mathrm{~ms} \\ 1155 \mathrm{~ms} \\ 1090 \mathrm{w} \\ 1060 \mathrm{vw} \end{gathered}$ | $\begin{gathered} 1327 \mathrm{vw} \\ 1269 \mathrm{~s} \\ 1234 \mathrm{~s} \\ 1185 \mathrm{~m} \\ 1136 \mathrm{~m} \\ 1100 \mathrm{~ms} \\ 1076 \mathrm{~ms} \end{gathered}$ | 1345 ms 1279 w 1248 s 1191 w 1165 s 1044 w | $\begin{gathered} 1340 \mathrm{w} \\ 1235 \mathrm{~ms} \\ 1161 \mathrm{~m} \\ 1117 \mathrm{~m} \end{gathered}$ | $\begin{aligned} & 1234 \mathrm{~ms} \\ & 1156 \mathrm{vw} \\ & 1130 \mathrm{w} \\ & 1078 \mathrm{w} \end{aligned}$ | $\begin{gathered} 1353 \mathrm{~s} \\ 1299 \mathrm{w} \\ 1276 \mathrm{w} \\ 1246 \mathrm{~ms} \\ 1166 \mathrm{~ms} \\ 1056 \mathrm{~m} \end{gathered}$ | $\begin{aligned} & 1267 \mathrm{~s} \\ & 1233 \mathrm{~s} \\ & 1182 \mathrm{w} \\ & 1137 \mathrm{~m} \\ & 1099 \mathrm{w} \\ & 1076 \mathrm{~m} \end{aligned}$ | $v(\mathrm{C}-\mathrm{C})$ $v(\mathrm{C}-\mathrm{N})$ $v(\mathrm{C}-\mathrm{O})$ CH, in-plane bend |
| $\begin{gathered} 1023 \mathrm{w} \\ 979 \mathrm{~m} \\ 940 \mathrm{w} \\ 916 \mathrm{w} \\ 827 \mathrm{w} \\ 779 \mathrm{~s} \end{gathered}$ | 1021 w 983 ms 942 w 883 m 844 ms 785 s | $\begin{gathered} 1019 \mathrm{w} \\ 975 \mathrm{mw} \\ 952 \mathrm{vw} \\ 851 \mathrm{~m} \\ 780 \mathrm{~s} \\ 717 \mathrm{vw} \end{gathered}$ | $\begin{gathered} 1023 \mathrm{vw} \\ 946 \mathrm{vw} \\ 819 \mathrm{w} \\ 770 \mathrm{~s} \\ 695 \mathrm{vw} \\ 656 \mathrm{vw} \end{gathered}$ | 1026 m 995 ms 927 ms 832 ms 780 s 756 m | $\begin{gathered} 977 \mathrm{~ms} \\ 891 \mathrm{w} \\ 854 \mathrm{w} \\ 823 \mathrm{w} \\ 766 \mathrm{~ms} \end{gathered}$ | $\begin{gathered} 1031 \mathrm{w} \\ 983 \mathrm{w} \\ 927 \mathrm{w} \\ 857 \mathrm{w} \\ 772 \mathrm{ws} \end{gathered}$ | $\begin{aligned} & 982 \mathrm{w} \\ & 931 \mathrm{w} \\ & 855 \mathrm{~m} \\ & 773 \mathrm{vs} \end{aligned}$ | 976 ms 947 w 893 vw 815 w 769 s 694 w | $\begin{gathered} 1026 \mathrm{vw} \\ 995 \mathrm{~m} \\ 927 \mathrm{~m} \\ 830 \mathrm{~ms} \\ 779 \mathrm{~s} \end{gathered}$ | $\begin{gathered} \delta_{\text {rock }} ; \mathrm{NH} \\ \mathrm{CH} \text {-deformation } \end{gathered}$ |
| $\begin{gathered} \hline 673 \mathrm{vw} \\ 584 \mathrm{~m} \end{gathered}$ | $\begin{aligned} & \hline 677 \mathrm{w} \\ & 629 \mathrm{w} \\ & 562 \mathrm{w} \\ & 501 \mathrm{w} \end{aligned}$ | $\begin{aligned} & 691 \mathrm{vw} \\ & 625 \mathrm{vw} \\ & 564 \mathrm{vw} \end{aligned}$ | $\begin{aligned} & 581 \mathrm{~m} \\ & 522 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 668 \mathrm{~m} \\ & 630 \mathrm{w} \\ & 581 \mathrm{w} \end{aligned}$ | $\begin{aligned} & \hline 655 \mathrm{w} \\ & 585 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 673 \mathrm{vw} \\ & 599 \mathrm{vw} \end{aligned}$ | $\begin{gathered} \hline 607 \mathrm{vw} \\ 564 \mathrm{w} \\ 492 \mathrm{w} \end{gathered}$ | $\begin{aligned} & 583 \mathrm{~m} \\ & 531 \mathrm{~m} \\ & 498 \mathrm{w} \end{aligned}$ | 668 m 615 w 577 w | Skeletal vibration CH bend |
| $\begin{aligned} & 507 \mathrm{~m} \\ & 467 \mathrm{w} \end{aligned}$ | 417 ms | $\begin{gathered} \hline 464 \mathrm{vw} \\ 419 \mathrm{~m} \end{gathered}$ | $\begin{gathered} 467 \mathrm{vw} \\ 420 \mathrm{w} \end{gathered}$ | $\begin{aligned} & 496 \mathrm{w} \\ & 457 \mathrm{w} \\ & 410 \mathrm{~m} \end{aligned}$ | $\begin{gathered} 501 \mathrm{~m} \\ 438 \mathrm{vw} \end{gathered}$ | 417 m | $\begin{aligned} & \hline 464 \mathrm{w} \\ & 422 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \hline 466 \mathrm{w} \\ & 420 \mathrm{w} \end{aligned}$ | $\begin{aligned} & 494 \mathrm{w} \\ & 460 \mathrm{w} \\ & 415 \mathrm{w} \end{aligned}$ | CH out of plane bend <br> Skeletal vibration CNC def. |

(a): $\mathrm{s}=$ strong, $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{sh}=$ shoulder, $\mathrm{v}=$ very, $\mathrm{br}=$ broad.
(b): $v$, stretching; $\delta$, bending.
are strongly supported by the observed main infrared bands for the reactants. However, the bands of 1,8-naphthalimide derivatives and TCNQ in the spectra of the $[(4 \mathrm{BAAN})(\mathrm{TCNQ})], \quad\left[(4 \mathrm{MAN})(\mathrm{TCNQ})_{2}\right]$, $\left[(4 \mathrm{PAN})(\mathrm{TCNQ})_{2}\right],[(4 \mathrm{MAAN})(\mathrm{TCNQ})]$, and [(4POAN)(TCNQ)] complexes show small
shifts in the frequency values as well as some changes in their intensities in comparison to those of the free donors and the TCNQ. This could be attributed to the expected symmetry and electronic structure changes in the formation of the CT complexes. In the case of the In the case of the $\left[(4 \mathrm{MAN})(\mathrm{TCNQ})_{2}\right]$ and

Table 8: Infrared frequencies ${ }^{(\mathrm{a})}\left(\mathrm{cm}^{-1}\right)$ and tentative assignments for (A): [(4BAAN)(DDQ)]; (B): [(4MAN)(DDQ)]; (C): [(4PAN)(DDQ)]; (D): [(4MAAN)(DDQ)]; and (E): [(4POAN)(DDQ)] CT complexes.

| A | B | C | D | E | Assignments ${ }^{(\mathbf{b})}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3248 s, br | 3421 w, br 3227 w,br | 3226 vs,br | $\begin{gathered} 3388 \mathrm{~ms} \\ 3236 \mathrm{~ms}, \mathrm{br} \end{gathered}$ | $\begin{aligned} & 3423 \mathrm{~ms}, \mathrm{br} \\ & 3240 \mathrm{w}, \mathrm{br} \end{aligned}$ | $\begin{gathered} v(\mathrm{O}-\mathrm{H}) ; \text { and } \mathrm{H}_{2} \mathrm{O} \text { of } \mathrm{KBr} \\ v(\mathrm{~N}-\mathrm{H}) \end{gathered}$ |
| $\begin{aligned} & 2978 \mathrm{vw} \\ & 2945 \mathrm{vw} \end{aligned}$ | 2982 w | 2932 ms | 2925 vw | 2966 ms | $\mathrm{v}_{\mathrm{as}}(\mathrm{C}-\mathrm{H}) ; \mathrm{CH}_{2}+\mathrm{CH}_{3}$ <br> $v(\mathrm{C}-\mathrm{H})$; aromatic |
| 2838 vw | $\begin{gathered} 2951 \mathrm{mw} \\ 2845 \mathrm{~m} \end{gathered}$ | 2854 w | 2849 vw | 2879 w | $v_{\mathrm{s}}(\mathrm{C}-\mathrm{H})+\mathrm{vas}(\mathrm{C}-\mathrm{H})$ |
| 2251 s | 2213 s | 2251 ms | 2237 ms | 2231 ms | $v(\mathrm{C} \equiv \mathrm{N}) ; \mathrm{DDQ}$ |
| 1680 w | 1691 s | 1698 s | 1678 ms | 1694 s | $v(\mathrm{C}=\mathrm{O})$; DDQ + donors |
| 1635 ms | 1655 vs | 1655 vs | 1637 s | 1652 vs |  |
| 1576 s | 1584 vs | 1581 vs | 1577 vs | 1587 s | $v(\mathrm{C}=\mathrm{C})$; aromatic |
|  |  | 1514 w | 1549 w | 1517 m |  |
| 1452 vs | 1450 ms | 1452 vs | 1451 s | 1454 ms | $\begin{aligned} & \delta(\mathrm{CH}) ; \mathrm{CH}_{\text {def. }} \\ & \delta(\mathrm{CH}) ; \text { aromatic } \end{aligned}$ |
|  | 1380 s | 1376 s | $\begin{gathered} 1421 \mathrm{w} \\ 1379 \mathrm{~ms} \end{gathered}$ | 1382 s |  |
| 1359 m | 1339 m | 1340 ms | 1337 m | 1346 w | $v(\mathrm{C}-\mathrm{C})+v(\mathrm{C}-\mathrm{N})$ <br> CH , in-plane bend |
| 1274 s | 1237 s | 1274 ms | 1275 ms | 1271 s |  |
| 1246 vw | 1180 m | 1235 ms | 1275 ms | 1237 s |  |
| 1191 s | 1116 ms | 1190 s | 1189 ms | 1181 w |  |
| 1074 ms | 1077 m | 1076 ms | 1117 w | $\begin{array}{r} 1102 \mathrm{~m} \\ 1079 \mathrm{~m} \\ \hline \end{array}$ |  |
|  |  |  | 1079 w |  |  |
| 997 vw | 1021 w | 1022 w | 994 vw | 1025 w | $\delta_{\text {rock }} ; \mathrm{NH}$ |
| 889 s | 983 ms | 993 vw | 939 vw | 997 m | CH-deformation$v(\mathrm{C}-\mathrm{Cl}) ; \mathrm{DDQ}$ |
| 775 ms | 943 w | 931 vw | 891 s | 939 m |  |
| 744 ms | 885 ms | 890 s | 824 vw | 894 m |  |
|  | 846 w | 780 s | 774 s | 818 m |  |
|  | 783 s | 748 w | 751 vw | 781 s |  |
|  | 756 ms |  | $\begin{aligned} & 691 \mathrm{~m} \\ & 615 \mathrm{w} \end{aligned}$ | 757 w |  |
| 691 w | 676 w | 691 mw | 579 w | 667 w | skeletal vibration |
| 621 ms | 598 mw | 620 m | 502 m | 608 w | CH bend |
| 525 w | 564 vw | 525 vw |  |  |  |
|  | 501 vw |  |  |  |  |
| 430 ms | 423 w | 422 m | 426 m | 494 w | CH out of plane bend |
|  |  |  |  | 418 m | Skeletal vibration CNC def. |

(a): $\mathrm{s}=$ strong, $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{sh}=$ shoulder, $\mathrm{v}=$ very, $\mathrm{br}=$ broad.
(b): $v$, stretching; $\delta$, bending.
[(4PAN)(TCNQ) $)_{2}$ CT complexes, the powerful electron withdrawal by CN groups in conjugation with the aromatic ring, cause a high delocalization and a great increase in the TCNQ affinity to the electron. Due to this fact, the 4MAN and 4PAN donors, which have rich donating sites (two aromatic rings, morpholine, and piperidino cyclic), are easy to be sandwiched between two TCNQ moieties to display the $1: 2$ stoichiometry of such CT complexes (Scheme 2). Tables 10 and 11 show the characteristic bands of CLA and

PA CT complexes. The comparison between the infrared spectral bands of the free donors and the acceptors (CLA and PA) and the corresponding bands that appear in the IR spectra of the CT complexes show the following:
i) The vibration frequency of the O-H group for the CLA and PA at $3235 \mathrm{~cm}^{-1}$ and ( 3416 and 3103 $\mathrm{cm}^{-1}$ ) is slightly affected in the IR spectra of the CT complexes, which means that the hydroxyl group is not involved in the CT complexation.
ii) The $\mathrm{C}=\mathrm{O}$ group stretching vibrations, appearing at ( 1664 and $1630 \mathrm{~cm}^{-1}$ ) in the case of the CLA CT complexes, are slightly shifted to
(1678 and $\left.1637 \mathrm{~cm}^{-1}\right),\left(1632\right.$ and $\left.1610 \mathrm{~cm}^{-1}\right)$, (1656 and $1631 \mathrm{~cm}^{-1}$ ), (1662 and $1631 \mathrm{~cm}^{-1}$ ) and ( $1630 \mathrm{~cm}^{-1}$ ) for the 4MAN, 4PAN, 4MAAN and 4POAN, respectively. On the other hand, in the case of the picric acid, the stretching vibrations of the CT complexes of the $\mathrm{C}=\mathrm{O}$ group, appearing at (1861 and $1632 \mathrm{~cm}^{-1}$ ) are slightly shifted to (1682 and $\left.1637 \mathrm{~cm}^{-1}\right),\left(1632\right.$ and $\left.1610 \mathrm{~cm}^{-1}\right)$, (1699 and $\left.1654 \mathrm{~cm}^{-1}\right)$, (1688 and $1637 \mathrm{~cm}^{-1}$ ) and (1695, 1657 and $1632 \mathrm{~cm}^{-1}$ ) for 4MAN, 4PAN, 4MAAN and 4POAN, respectively
iii) The group of bands, in terms with the $\mathrm{C}-\mathrm{Cl}$ vibration, which appeared at 752 and $690 \mathrm{~cm}^{-1}$, exhibit a shift to a higher and a lower wavenumber in the corresponding CT complexes:
(772 and $693 \mathrm{~cm}^{-1}$ ), (732 and $704 \mathrm{~cm}^{-1}$ ), (754 and $690 \mathrm{~cm}^{-1}$ ), ( 755 and $688 \mathrm{~cm}^{-1}$ ) and (756 and 695 $\mathrm{cm}^{-1}$ ) for 4MAN, 4PAN, 4MAAN and 4POAN, respectively.
iv) The characteristic bands of the free donor, such as the stretching vibrations of the $\mathrm{C}=\mathrm{C}$, $\delta(\mathrm{CH})$; aromatic ring, $(\mathrm{C}-\mathrm{C}),(\mathrm{C}-\mathrm{N})$, and the CH-deformation, are largely affected, demonstrated by their intensities. The CT complexation of N -allyl derivatives of 1.8naphthalimide and the chloranilic acid (CLA) and picric acid (PA) occurs through $\pi-\pi^{*}$ transition (from the aromatic ring of the donor to the aromatic ring of the acceptors), Scheme 3.


Scheme 1: The charge transfer interaction between 1,8-naphthalimide derivatives and the $\pi$-acceptor, DDQ (where $\mathrm{A}=$ 4-morpholino for (4MAN), 4-piperdino for (4PAN), 4methylamino for (4MAAN), and 4propyloxy for (4POAN)).


Scheme 2: The $\left[(4 \mathrm{MAN})(\mathrm{TCNQ})_{2}\right.$ ] and $\left[(4 \mathrm{PAN})(\mathrm{TCNQ})_{2}\right]$ CT complexes (where $\mathrm{A}=4$-morpholino for (4MAN) and 4-piperdino for (4PAN)).


Scheme 3: The charge transfer interaction between 1.8naphthalimide and the $\pi$-acceptor, CLA and PA (where A= 4morpholino for (4MAN), 4-piperdino for (4PAN), 4-methylamino for (4MAAN) and 4-propyloxy for (4POAN)).

## Mass Spectra

The mass spectrum of $[(4 \mathrm{MAAN})] \mathrm{I}_{2}$ complex proves the complexation between 4MAAN and iodine. This becomes obvious the presence of the main fragment peaks of the donor (4MAAN), and the iodine at $\mathrm{m} / \mathrm{z}(\%)=266(37 \%)$ and $251(100 \%)$, respectively. On the other hand, the TLC diagram, accompanying the mass spectrum, gives one sharp peak. This gives an idea about the purity of the resulted complex.

The mass spectra of the 4BAAN/TCNQ, 4MAN/TCNQ, 4PAN/ TCNQ, 4MAAN/TCNQ, 4POAN/CLA, 4MAN/CLA, and 4MAAN/PA CT complexes displayed molecular ion peaks, $\mathrm{M}^{+}$, at
$\mathrm{m} / \mathrm{z}(\%)$ : (308(44\%) and 204(24\%)) for 4BAAN and TCNQ, at $(322(9 \%)$ and $204(100 \%)$ ) for 4MAN and TCNQ, at (320(46\%) and 204(100\%)) for 4PAN and TCNQ, at (266(46\%) and 204(7\%)) for 4MAAN and TCNQ, at (295(37\%) and $209(9 \%))$ for 4POAN and CLA, at (322(84\%) and $209(14 \%))$ for 4MAN and CLA, and at (266(44\%) and $227(2 \%))$ for 4MAAN and PA, respectively. The intensity of these peaks gives an idea about the stability of these fragments. The presence of the molecular ion peaks of both, donor and acceptor, strongly supports the association of the charge transfer complexes of the donor and the acceptor.

Table 9. Infrared frequencies ${ }^{(\mathrm{a})}\left(\mathrm{cm}^{-1}\right)$ and tentative assignments for (A): [(4BAAN)(TCNQ)]; (B): [(4MAN)(TCNQ) ${ }^{2}$; $(\mathrm{C}):\left[(4 \mathrm{PAN})(\mathrm{TCNQ})_{2}\right] ;(\mathrm{D}):[(4 \mathrm{MAAN})(\mathrm{TCNQ})] ;$ and $(\mathrm{E}):[(4 \mathrm{POAN})(\mathrm{TCNQ})]$ CT complexes.

| A | B | C | D | E | Assignments ${ }^{(\mathbf{b})}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 3366 \mathrm{~s}, \mathrm{br} \\ 3137 \mathrm{w} \end{gathered}$ | $\begin{gathered} 3425 \mathrm{~ms}, \mathrm{br} \\ 3137 \mathrm{w} \end{gathered}$ | $\begin{gathered} 3425 \mathrm{~ms}, \mathrm{br} \\ 3136 \mathrm{w} \end{gathered}$ | $\begin{aligned} & 3390 \mathrm{vs} \\ & 3136 \mathrm{vw} \end{aligned}$ | $\begin{gathered} 3567 \mathrm{vw} \\ 3424 \mathrm{w}, \mathrm{br} \\ 3136 \mathrm{vw} \end{gathered}$ | $v(\mathrm{O}-\mathrm{H})$; and $\mathrm{H}_{2} \mathrm{O}$ of KBr $v(\mathrm{~N}-\mathrm{H})$ |
| 3050 ms | $\begin{gathered} \mathrm{v}_{\mathrm{as}}(\mathrm{C}-\mathrm{H}) ; \mathrm{CH}_{2}+\mathrm{CH}_{3} \\ \mathrm{v}(\mathrm{C}-\mathrm{H}) ; \text { aromatic } \end{gathered}$ |
| 2957 ms | 2952 m | 2933 ms | 2932 w | 2964 ms | $\mathrm{v}_{\mathrm{s}}(\mathrm{C}-\mathrm{H})+\mathrm{v}_{\mathrm{as}}(\mathrm{C}-\mathrm{H})$ |
| 2930 ms | 2918 vw | 2850 m | 2851 vw | 2933 w |  |
| 2866 w | 2847 m | 2810 w |  |  |  |
| 2220 s | 2221 ms | 2220 s | 2221 ms | 2219 ms | $v(\mathrm{C} \equiv \mathrm{N})$; TCNQ |
| 1683 s | 1690 s | 1697 s | 1680 s | 1696 s | $v(\mathrm{C}=\mathrm{O})$; donors |
| 1641 s | 1655 vs | 1652 vs | 1635 s | 1659 vs |  |
| 1579 vs | 1588 s | 1589 ms | 1576 vs | 1589 s | $v(\mathrm{C}=\mathrm{C})$; aromatic |
| 1542 vs | 1541 s | 1541 ms | 1545 vs | 1541 m |  |
|  | 1512 vw | 1513 vw |  | 1514 mw |  |
| 1440 w | 1446 m | 1448 vw | 1446 m | 1461 ms | $\delta(\mathrm{CH}) ; \mathrm{CH}_{\text {def. }}$ $\delta(\mathrm{CH})$; aromatic |
| 1421 vw | 1379 s | 1420 w | 1418 m | 1380 s |  |
| 1376 s |  | 1381 ms | 1380 vs |  |  |
| 1374 s | 1352 s | 1347 ms | 1354 s | 1328 vw | $v(\mathrm{C}-\mathrm{C})+v(\mathrm{C}-\mathrm{N})$ <br> CH , in-plane bend |
| 1335 s | 1238 s | 1234 s | 1298 ms | 1269 s |  |
| 1294 w | 1179 m | 1177 m | 1245 ms | 1234 s |  |
| 1246 s | 1152 vw | 1130 m | 1154 ms | 1183 w |  |
| 1187 vw | 1118 s | 1080 m | 1122 vw | 1134 w |  |
| 1129 m | 1078 m |  | 1089 vw | 1100 ms |  |
| 1100 m | 1021 w |  | 1060 vw | 1077 w |  |
| 993 vw | 983 m | 1020 vw | 1022 vw | 1026 w | $\delta_{\text {rock }} ; \mathrm{NH}$CH-deformation |
| 934 vw | 958 vw | 974 mw | 974 vw | 995 ms |  |
| 860 s | 917 vw | 926 vw | 949 vw | 928 ms |  |
| 817 vw | 883 vw | 860 s | 861 s | 860 ms |  |
| 770 ms | 860 s | 808 vw | 814 w | 833 vw |  |
|  | 784 ms | 780 ms | 771 s | 781 s |  |
|  | 757 m |  | 655 w | 756 w |  |
|  |  |  | 652 w |  |  |
| 695 vw | 673 m | 692 vw | 581 m | 668 w | skeletal vibration CH bend |
| 662 vw | 624 w | 622 mw | 521 w | 625 w |  |
|  | 591 w | 566 vw |  | 551 w |  |
|  | 562 w |  |  |  |  |
| 474 s | 498 w | 474 ms | 473 ms | 472 ms | CH out of plane bend Skeletal vibration CNC def. |
|  | 474 ms | 417 m | 420 m | 410 m |  |

(a): $\mathrm{s}=$ strong, $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{sh}=$ shoulder, $\mathrm{v}=$ very, $\mathrm{br}=$ broad.
(b): $v$, stretching; $\delta$, bending.
${ }^{1}$ HNMR Spectra
${ }^{1}$ HNMR spectra of the 4POAN/DDQ, 4POAN/TCNQ, 4BAAN/ CLA, 4PAN/CLA, 4MAAN/CLA, and 4POAN/CLA CT-complexes in DMSO were measured. It is obvious that the results from the elemental analysis, the infrared spectra, and the photometric titrations agree well with each other in the same point of ${ }^{1}$ HNMR
spectra to interpret the mode of interaction between the donor and the acceptor. The chemical shifts ( $\delta \mathrm{ppm}$ ) of the proton NMR spectra within the range of 6.5 to 8.5 peaks, assigned to the proton of the aromatic rings, were intensively affected at low intensities due to the $\pi-\pi^{*}$ transition.

Table 10. Infrared frequencies ${ }^{(\mathrm{a})}\left(\mathrm{cm}^{-1}\right)$ and tentative assignments for (A): [(4BAAN)(CLA)]; (B): [(4MAN)(CLA)]; (C): [(4PAN)(CLA)]; (D): [(4MAAN) (CLA)]; and (E): [(4POAN)(CLA)] CT-complexes.

| A | B | C | D | E | Assignments ${ }^{(b)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 3508 \mathrm{w} \mathrm{br} \\ 3372 \mathrm{~s} \\ 3236 \mathrm{~ms} \end{gathered}$ | $\begin{gathered} 3423 \mathrm{w} \mathrm{br} \\ 3298 \mathrm{~s} \end{gathered}$ | $\begin{gathered} 3510 \mathrm{~m} \\ 3400 \mathrm{vw}, \mathrm{br} \\ 3236 \mathrm{~s} \end{gathered}$ | $\begin{gathered} 3513 \mathrm{~ms} \\ 3390 \mathrm{~s} \\ 3236 \mathrm{~ms} \end{gathered}$ | $\begin{gathered} 3507 \mathrm{vw} \\ 3235 \mathrm{~s} \end{gathered}$ | $\begin{aligned} & v(\mathrm{O}-\mathrm{H}) ; \mathrm{CLA} \text { and } \mathrm{H}_{2} \mathrm{O} \text { of } \mathrm{KBr} \\ & (\mathrm{~N}-\mathrm{H}) \end{aligned}$ |
| -- | 3104 ms | 3125 vw | 3109 vw | 3115 vw, sh | $\begin{gathered} \mathrm{v}_{\mathrm{as}}(\mathrm{C}-\mathrm{H}) ; \mathrm{CH}_{2}+\mathrm{CH}_{3} \\ \mathrm{v}(\mathrm{C}-\mathrm{H}) ; \text { aromatic } \\ \hline \end{gathered}$ |
| $\begin{aligned} & 2957 \mathrm{~ms} \\ & 2867 \mathrm{w} \end{aligned}$ | $\begin{aligned} & 2957 \mathrm{~ms} \\ & 2867 \mathrm{w} \end{aligned}$ | $\begin{gathered} 2935 \mathrm{~m} \\ 2850 \mathrm{w} \\ 2815 \mathrm{vw} \end{gathered}$ | 2935 vw | $\begin{aligned} & 2966 \mathrm{~ms} \\ & 2880 \mathrm{w} \end{aligned}$ | $\mathrm{v}_{\mathrm{s}}(\mathrm{C}-\mathrm{H})+{ }_{\text {as }}(\mathrm{C}-\mathrm{H})$ |
| $\begin{gathered} \hline 1678 \mathrm{~s} \\ 1637 \mathrm{vs} \end{gathered}$ | $\begin{gathered} \hline 1632 \mathrm{~s} \\ 1610 \mathrm{~ms} \end{gathered}$ | $\begin{aligned} & \hline 1697 \mathrm{~m} \\ & 1656 \mathrm{vs} \\ & 1631 \mathrm{vs} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1662 \mathrm{w} \\ & 1631 \mathrm{vs} \end{aligned}$ | 1630 vs | $v(\mathrm{C}=\mathrm{O})$; CLẠdonors |
| $\begin{gathered} \hline 1580 \mathrm{vs} \\ 1549 \mathrm{~s} \end{gathered}$ | 1532 s | $\begin{gathered} 1592 \mathrm{vw} \\ 1541 \mathrm{w} \end{gathered}$ | $\begin{aligned} & \hline 1577 \mathrm{~ms} \\ & 1547 \mathrm{~ms} \end{aligned}$ | $\begin{gathered} \hline 1591 \mathrm{~s} \\ 1543 \mathrm{vw} \\ 1517 \mathrm{~m} \\ \hline \end{gathered}$ | $v(\mathrm{C}=\mathrm{C})$; aromatic |
| $\begin{aligned} & 1462 \mathrm{w} \\ & 1375 \mathrm{~s} \end{aligned}$ | 1430 ms | $\begin{gathered} \hline 1458 \mathrm{w} \\ 1420 \mathrm{vw} \\ 1371 \mathrm{~s} \end{gathered}$ | $\begin{aligned} & \hline 1446 \mathrm{w} \\ & 1379 \mathrm{vs} \end{aligned}$ | $\begin{gathered} \hline 1461 \mathrm{~m} \\ 1422 \mathrm{vw} \\ 1380 \mathrm{~s} \end{gathered}$ | $\delta(\mathrm{CH}) ; \mathrm{CH}_{\text {def. }}$ $\delta(\mathrm{CH})$; aromatic |
| $\begin{gathered} 1338 \mathrm{~ms} \\ 1290 \mathrm{w} \\ 1247 \mathrm{~s} \\ 1186 \mathrm{w} \\ 1141 \mathrm{~m} \\ 1101 \mathrm{~m} \\ \hline \end{gathered}$ | $\begin{aligned} & 1342 \mathrm{vs} \\ & 1271 \mathrm{~ms} \\ & 1153 \mathrm{~ms} \\ & 1087 \mathrm{~ms} \end{aligned}$ | $\begin{aligned} & 1269 \mathrm{vs} \\ & 1178 \mathrm{vw} \\ & 1135 \mathrm{vw} \\ & 1081 \mathrm{vw} \end{aligned}$ | 1288 vs 1156 m 1090 vw | $\begin{aligned} & 1272 \mathrm{vs} \\ & 1242 \mathrm{vs} \\ & 1170 \mathrm{~ms} \\ & 1097 \mathrm{~ms} \end{aligned}$ | $v(\mathrm{C}-\mathrm{C})+(\mathrm{C}-\mathrm{N})$ <br> CH , in-plane bend |
| $\begin{gathered} 980 \mathrm{~s} \\ 939 \mathrm{w} \\ 846 \mathrm{~ms} \\ 772 \mathrm{~ms} \\ 693 \mathrm{~ms} \end{gathered}$ | $\begin{gathered} 919 \mathrm{~ms} \\ 784 \mathrm{~m} \\ 732 \mathrm{~ms} \\ 704 \mathrm{~ms} \end{gathered}$ | $\begin{gathered} 1019 \mathrm{vw} \\ 983 \mathrm{~s} \\ 930 \mathrm{vw} \\ 848 \mathrm{~s} \\ 780 \mathrm{~ms} \\ 754 \mathrm{~ms} \\ 690 \mathrm{~ms} \end{gathered}$ | $\begin{gathered} 987 \mathrm{~s} \\ 852 \mathrm{~s} \\ 772 \mathrm{~ms} \\ 755 \mathrm{~m} \\ 688 \mathrm{~ms} \end{gathered}$ | $\begin{gathered} 1027 \mathrm{w} \\ 978 \mathrm{~s} \\ 927 \mathrm{vw} \\ 841 \mathrm{~ms} \\ 785 \mathrm{~s} \\ 756 \mathrm{~ms} \\ 695 \mathrm{~m} \\ \hline \end{gathered}$ | $\delta_{\text {rock }} ; \mathrm{NH}$ CH-deformation $v(\mathrm{C}-\mathrm{Cl}) ;$ CLA |
| $\begin{aligned} & \hline 572 \mathrm{~ms} \\ & 542 \mathrm{vw} \\ & \hline \end{aligned}$ | 541 w | 571 s | 574 ms | $\begin{aligned} & \hline 669 \mathrm{vw} \\ & 569 \mathrm{~ms} \\ & \hline \end{aligned}$ | skeletal vibration CH bend |
| 417 w | ----- | 420 w | 422 w | $\begin{aligned} & \hline 462 \mathrm{w} \\ & 410 \mathrm{~m} \end{aligned}$ | CH out of plane bend Skeletal vibration CNC def. |

(a): $\mathrm{s}=$ strong, $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{sh}=$ shoulder, $\mathrm{v}=$ very, $\mathrm{br}=$ broad.
(b): $v$, stretching; $\delta$, bending.

## Thermal Investigation

The thermal stability domains, the melting points, the decomposition phenomena and their assignments for the N -allyl derivatives of the 1.8naphthalimide such as 4-Butylamino-N-allyl-1.8naphthalimide (4BAAN), 4-Morpholino-N-allyl-1.8-naphthalimide (4MAN), 4-Piperdino-N-allyl1.8 naphthalimide (4PAN), 4-Methylamino-N-allyl-1.8naphthalimide (4MAAN), and 4-Propyloxy-N-allyl-1.8-naphthalimide (4POAN) CT-complexes are summarized in Table 12. The simultaneous TG/DTG curves for the 4BAAN/DDQ, 4MAN/DDQ, 4PAN/DDQ, 4MAAN/DDQ, 4POAN/TCNQ, and 4MAN/PA
(1:1) charge-transfer complexes at heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$ in static nitrogen atmosphere are given in Figure 7 (A-F).

The overall mass loss from the TG curves is $49.22 \%$ for the 4BAAN/DDQ, $63.77 \%$ for the $4 \mathrm{MAN} / \mathrm{DDQ}, \quad 58.08 \%$ for the $4 \mathrm{PAN} / \mathrm{DDQ}$, $41.38 \%$ for the $4 \mathrm{MAAN} / \mathrm{DDQ}, 45.59 \%$ for the 4POAN/TCNQ, and $95.47 \%$ for the $4 \mathrm{MAN} / \mathrm{PA}$ complexes, respectively. The complexes have from one to four maximal peak mass losses. The analysis of thermal curves for the CT complexes clearly indicates that the first maximum peaks are at $268,274,248,150,226$, and $223^{\circ} \mathrm{C}$, respectively.


Fig. 7. TGA/DTG curves for (A): 4BAAN/DDQ; (B): 4MAN/DDQ; (C): 4PAN/DDQ; (D): 4MAAN/DDQ; (E): 4POAN/TCNQ; and (F): 4MAN/PA CT complexes.

## 4BAAN/DDQ CT Complex

The $[(4 \mathrm{BAAN})(\mathrm{DDQ})]$ melts at $209^{\circ} \mathrm{C}$ with a simultaneous decomposition occurring. The main degradation peak is observed at $268{ }^{\circ} \mathrm{C}$ in the thermogravimetric analysis (TG) profile. Figure 7 A shows the TG profile of the [(4BAAN)(DDQ)]

CT complex. It appears from the TG curve that the sample decomposes in two sharp stages in a wide temperature range of $130-600{ }^{\circ} \mathrm{C}$. The decomposition occurs with a mass loss of $49.22 \%$, and its calculated value is $50.65 \%$.

Table 11. Infrared frequencies ${ }^{(\mathrm{a})}\left(\mathrm{cm}^{-1}\right)$ and tentative assignments for (A): [(4BAAN)(PA)]; (B): [(4MAN)(PA)]; (C): [(4PAN)(PA)]; (D): [(4MAAN)(PA)]; and (E): [(4POAN)(PA)] CT complexes.
$\left.\begin{array}{cccccc}\text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { Assignments }{ }^{(\mathbf{b})} \\ \hline 3365 \mathrm{~s} & \begin{array}{c}3423 \mathrm{w}, \mathrm{br} \\ 3297 \mathrm{w}\end{array} & \begin{array}{c}3423 \mathrm{vw}, \mathrm{br} \\ 3297 \mathrm{vw}\end{array} & 3437 \mathrm{vs} & \begin{array}{c}3424 \mathrm{w}, \mathrm{br} \\ 3299 \mathrm{vw}\end{array} & \mathrm{v}(\mathrm{O}-\mathrm{H}) ; \mathrm{PA} \text { and } \mathrm{H}_{2} \mathrm{O} \text { of KBr } \\ \mathrm{v}(\mathrm{N}-\mathrm{H})\end{array}\right]$
(a): $\mathrm{s}=$ strong, $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{sh}=$ shoulder, $\mathrm{v}=$ very, $\mathrm{br}=$ broad.
(b): $v$, stretching; $\delta$, bending.

## 4MAN/DDQ CT Complex

The thermal analysis curves for the 4MAN/DDQ CT complex show that decomposition takes place in a single stage in a temperature range between 150 and $600{ }^{\circ} \mathrm{C}$ at maximum differential thermogravimetric analysis ( $\mathrm{DTG}_{\text {max }}$ ) of $274{ }^{\circ} \mathrm{C}$ (Figure 7 B ). The single endothermic decomposition stage corresponds to the decomposition of both, the donor and the acceptor (DDQ). The TG curve of the [(4MAN)(DDQ)] complex shows a weight loss
(Found 63.77, Calcd. 65.03\%) corresponding to the loss of organic moiety, $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Cl}_{2}$ ). The final product, formed at $600{ }^{\circ} \mathrm{C}$, consists of limited 16 C with insufficient oxygen atoms.

## 4PAN/DDQ CT Complex

The thermal degradation of the [(4PAN)(DDQ)] CT-complex proceeds in two main stages (Figure 7C). These two stages relate to the decomposition of the 4-Piperdino-N-allyl1.8 naphthalimide (4PAN) and the DDQ as an acceptor; (Found 58.08\%; Calcd. 58.32\%), in

Table 12: Thermal data of: (A): 4BAAN/DDQ; (B): 4MAN/DDQ; (C): 4PAN/DDQ; (D): 4MAAN/DDQ; (E): 4POAN/TCNQ; and (F): 4MAN/PA CT complexes.

| Complexes | Steps | Temp/range $\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{DTG}_{\text {max }}$ | TG <br> Total weight loss (\%) |  | Assignments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Found | Calc. |  |
| A | $1^{\text {st }}$ | 130-475 | 268 | 49.22 | 50.65 | $\mathrm{C}_{5} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cl}_{2}$ |
|  | $2^{\text {nd }}$ | 475-600 | 581 |  |  | 22C Residue |
| B | $1^{\text {st }}$ | 150-600 | 274 | 63.77 | 65.03 | $\begin{gathered} \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Cl}_{2} \\ \text { 16C Residue } \end{gathered}$ |
| C | $1^{\text {st }}$ | 70-325 | 248 | 58.08 | 58.32 | $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cl}_{2}$ |
|  | $2^{\text {nd }}$ | 325-600 | 570 |  |  | 19C Residue |
| D | $1^{\text {st }}$ | 25-80 | 61 | 41.38 | 41.58 | $\mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cl}_{2}$ |
|  | $2^{\text {nd }}$ | 80-200 | 150 |  |  | 24C Residue |
|  | $3^{\text {rd }}$ | 200-350 | 269 |  |  |  |
|  | $4^{\text {th }}$ | 350-600 | 576 |  |  |  |
| E | $1{ }^{\text {st }}$ | 150-250 | 226 | 45.59 | 47.09 | $\mathrm{C}_{8} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{3}$ |
|  | $2^{\text {nd }}$ | 250-400 | 343 |  |  | 22C Residue |
|  | $3^{\text {rd }}$ | 400-600 | 560 |  |  |  |
| F | $1^{\text {st }}$ | 130-280 | 223 | 95.47 | 95.64 | $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{13}$ |
|  | $2^{\text {nd }}$ | 280-400 | 352 |  |  | 2C Residue |
|  | $3^{\text {rd }}$ | 400-600 | 561 |  |  |  |

temperature ranges of $70-600{ }^{\circ} \mathrm{C}$ by giving an endothermic effect ( $\mathrm{DTG}_{\text {max }}: 248$ and $570^{\circ} \mathrm{C}$ ).

## 4MAAN/DDQ CT Complex

The TG diagrams of the [(4MAAN)(DDQ)] CT complex reveal mass loss in the temperature range of $25-600^{\circ} \mathrm{C}$, corresponding to the formation of residual carbon atoms due to a limited supply of oxygen. The four endothermic peaks are observed in the DTG analysis (Figure 7D). The maxima of these peaks are found to be ( $\mathrm{DTG}_{\text {max }}$ : $61,150,269$, and $576^{\circ} \mathrm{C}$ ). The first peak is referring to the melting point of the CT complex. This step occurred without mass loss and it can be assigned any organic moiety. The mass losses at 150,269 , and $579^{\circ} \mathrm{C} \mathrm{DTG}_{\text {max }}$, respectively, are endothermic decompositions and correspond to the loss of the $\mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cl}_{2}$ organic rest. The overall weight loss (Found 41.38\%, calcd. $41.58 \%$ ) agrees well with the proposed structure.

4POAN/TCNQ CT Complex
The TG of the [(4POAN)(TCNQ)] CT complex: three steps are shown in the pyrolysis curve at 226,343 and $560{ }^{\circ} \mathrm{C}$. The first step corresponds to the eliminated $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ molecule (Calcd.: 11.62\%, Found: 12.26\%). The remaining two, the TCNQ and the 1.8 naphthalimide molecules, decompose in the second and the third steps with the formation of 22 C as the final residue.

## 4MAN/PA CT Complexes

The 4MAN/PA CT complex consists of three decomposition steps at 223,352 , and $561{ }^{\circ} \mathrm{C}$. The
first step, which is in the $130-280^{\circ} \mathrm{C}$ temperature range, corresponds to the decomposition of both, the donor (4MAN) and the acceptor (PA) $\left(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{13}\right.$, organic moiety), in the presence of oxygen atoms, gave $83.16 \%$ weight loss. The second and the third steps ( $\mathrm{DTG}_{\text {max }} ; 352$ and $561^{\circ} \mathrm{C}$ ) seems to be consistent with the evolution of the CO (Calcd.: $5.08 \%$, Found: $4.61 \%$ ), and the $\mathrm{CO}_{2}$ (Calcd.: $7.98 \%$, Found: $7.70 \%$ ) molecules, respectively.

## Kinetic Studies

The kinetic data of the first and the second decomposition steps of the 4BAAN/DDQ, 4MAN/DDQ, 4PAN/DDQ, 4MAAN/DDQ, 4POAN/TCNQ, and 4MAN/PA CT complexes was presented using the Coats-Readfern and Horowitez-Metzegar methods [31,32]. The kinetic parameters, $\mathrm{E}, \mathrm{A}, \Delta \mathrm{S}, \Delta \mathrm{H}, \Delta \mathrm{G}$, and r , is calculated and the data are listed in Table 13.

The activation energies of the formation of 1.8 -naphthalimide derivatives with DDQ in the case of the first degradation step are in the following order:

$$
\begin{gathered}
4 \mathrm{MAN} / \mathrm{DDQ}>4 \mathrm{PAN} / \mathrm{DDQ}>4 \mathrm{MAAN} / \mathrm{DDQ}> \\
4 \mathrm{BAAN} / \mathrm{DDQ}
\end{gathered}
$$

The comparison between 4POAN/TCNQ and 4MAN/PA found that the activation energy in the TCNQ complex is higher five times than in the PA charge-transfer complex due to the strong powerful TCNQ acceptor, which contains four cyano groups.

Table 13: Kinetic parameters, obtained trough the Coats-Redfern (CR) and Horowitz-Metzger (HM) methods for (A): 4BAAN/DDQ; (B): 4MAN/DDQ; (C): 4PAN/DDQ; (D): 4MAAN/DDQ; (E): 4POAN/TCNQ; and (F): 4MAN/PA CT complexes.

| complex | stage | method | parameter |  |  |  |  | r |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \mathrm{E} \\ \left(\mathrm{Jol}^{-1}\right) \end{gathered}$ | A ( $\mathrm{s}^{-1}$ ) | $\begin{gathered} \Delta \mathrm{S} \\ \left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{gathered}$ | $\begin{gathered} \Delta \mathrm{H} \\ \left(\mathrm{~J} \mathrm{~mol}^{-1}\right) \end{gathered}$ | $\begin{gathered} \Delta \mathrm{G} \\ \left(\mathrm{~J} \mathrm{~mol}^{-1)}\right. \end{gathered}$ |  |
| A | $1^{\text {st }}$ | CR | $1.11 \times 10^{5}$ | $4.06 \times 10^{8}$ | $-8.49 \times 10^{1}$ | $1.06 \times 10^{5}$ | $1.52 \times 10^{5}$ | 0.9989 |
|  |  | HM | $1.19 \times 10^{5}$ | $5.57 \times 10^{9}$ | $-6.32 \times 10^{1}$ | $1.14 \times 10^{5}$ | $1.48 \times 10^{5}$ | 0.9978 |
|  |  | average | $1.15 \times 10^{5}$ | $2.31 \times 10^{8}$ | $-7.41 \times 10^{1}$ | $1.10 \times 10^{5}$ | $1.5 \times 10^{5}$ |  |
|  | $2^{\text {nd }}$ | CR | $3.49 \times 10^{5}$ | $3.91 \times 10^{19}$ | $1.21 \times 10^{2}$ | $3.42 \times 10^{5}$ | $2.38 \times 10^{5}$ | 0.9961 |
|  |  | HM | $3.69 \times 10^{5}$ | $5.54 \times 10^{20}$ | $1.43 \times 10^{2}$ | $3.61 \times 10^{5}$ | $2.39 \times 10^{5}$ | 0.9988 |
|  |  | average | $3.59 \times 10^{5}$ | $2.232 \times 10^{19}$ | $1.32 \times 10^{2}$ | $3.51 \times 10^{5}$ | $2.39 \times 10^{5}$ |  |
| B | $1^{\text {st }}$ | CR | $7.7 \times 10^{4}$ | $1.49 \times 10^{5}$ | $-1.51 \times 10^{2}$ | $7.24 \times 10^{4}$ | $1.55 \times 10^{5}$ | 0.99770.9984 |
|  |  | HM | $8.59 \times 10^{4}$ | $1.32 \times 10^{5}$ | $-1.33 \times 10^{2}$ | $8.13 \times 10^{4}$ | $1.54 \times 10^{5}$ |  |
|  |  | average | $8.15 \times 10^{4}$ | $1.41 \times 10^{5}$ | $-1.42 \times 10^{2}$ | $7.68 \times 10^{4}$ | $1.55 \times 10^{5}$ |  |
| C | $1^{\text {st }}$ | CR | $6.4 \times 10^{4}$ | $1.30 \times 10^{4}$ | $-1.71 \times 10^{2}$ | $5.97 \times 10^{4}$ | $1.49 \times 10^{5}$ | 0.9996 |
|  |  | HM | $7.18 \times 10^{4}$ | $1.16 \times 10^{4}$ | $-1.53 \times 10^{2}$ | $6.74 \times 10^{4}$ | $1.47 \times 10^{5}$ | 0.9981 |
|  |  | average | $6.79 \times 10^{4}$ | $1.23 \times 10^{4}$ | $-1.62 \times 10^{2}$ | $6.36 \times 10^{4}$ | $1.48 \times 10^{5}$ |  |
|  | $2^{\text {nd }}$ | CR | $2.33 \times 10^{5}$ | $3.21 \times 10^{12}$ | $-1.41 \times 10^{1}$ | $2.26 \times 10^{5}$ | $2.38 \times 10^{5}$ | 0.9999 |
|  |  | HM | $2.31 \times 10^{5}$ | $2.12 \times 10^{12}$ | $-1.76 \times 10^{1}$ | $2.24 \times 10^{5}$ | $2.39 \times 10^{5}$ | 0.9996 |
|  |  | average | $2.32 \times 10^{5}$ | $2.67 \times 10^{12}$ | $-1.58 \times 10^{1}$ | $2.25 \times 10^{5}$ | $2.39 \times 10^{5}$ |  |
| D | $1^{\text {st }}$ | CR | $4.73 \times 10^{4}$ | $1.4 \times 10^{5}$ | $-1.47 \times 10^{2}$ | $4.46 \times 10^{4}$ | $9.36 \times 10^{4}$ | 0.9936 |
|  |  | HM | $5.17 \times 10^{4}$ | $1.82 \times 10^{6}$ | $-1.26 \times 10^{2}$ | $4.9 \times 10^{4}$ | $9.1 \times 10^{4}$ | 0.9973 |
|  |  | average | $4.95 \times 10^{4}$ | $0.791 \times 10^{5}$ | $-1.37 \times 10^{2}$ | $4.68 \times 10^{4}$ | $9.23 \times 10^{4}$ |  |
|  | $2^{\text {nd }}$ | CR | $5.04 \times 10^{4}$ | $4.98 \times 10^{3}$ | $-1.77 \times 10^{2}$ | $4.68 \times 10^{4}$ | $1.22 \times 10^{5}$ | 0.9998 |
|  |  | HM | $5.84 \times 10^{4}$ | $1.56 \times 10^{5}$ | $-1.48 \times 10^{2}$ | $5.48 \times 10^{4}$ | $1.18 \times 10^{5}$ | 0.9981 |
|  |  | average | $5.44 \times 10^{4}$ | $2.49 \times 10^{3}$ | $-1.63 \times 10^{2}$ | $5.08 \times 10^{4}$ | $1.2 \times 10^{5}$ |  |
| E | $1^{\text {st }}$ | CR | $5.71 \times 10^{4}$ | $5.01 \times 10^{3}$ | $-1.78 \times 10^{2}$ | $5.3 \times 10^{4}$ | $1.42 \times 10^{5}$ | 0.9893 |
|  |  | HM | $6.23 \times 10^{4}$ | $2.6 \times 10^{4}$ | $-1.65 \times 10^{2}$ | $5.82 \times 10^{4}$ | $1.4 \times 10^{5}$ | 0.9997 |
|  |  | average | $5.97 \times 10^{4}$ | $2.64 \times 10^{3}$ | $-1.72 \times 10^{2}$ | $5.56 \times 10^{4}$ | $1.41 \times 10^{5}$ |  |
|  | $2^{\text {nd }}$ | CR | $7.9 \times 10^{4}$ | $2.16 \times 10^{4}$ | $-1.68 \times 10^{2}$ | $7.4 \times 10^{4}$ | $1.77 \times 10^{5}$ | 0.9854 |
|  |  | HM | $8.75 \times 10^{4}$ | $1.98 \times 10^{5}$ | $-1.5 \times 10^{2}$ | $8.24 \times 10^{4}$ | $1.74 \times 10^{5}$ | 0.9992 |
|  |  | average | $8.33 \times 10^{4}$ | $2.07 \times 10^{4}$ | $-1.59 \times 10^{2}$ | $4.82 \times 10^{4}$ | $1.76 \times 10^{5}$ |  |
| F | $1^{\text {st }}$ | CR | $1.01 \times 10^{5}$ | $6.18 \times 10^{8}$ | $-8.09 \times 10^{1}$ | $9.74 \times 10^{4}$ | $1.38 \times 10^{5}$ | 0.9988 |
|  |  | HM | $1.11 \times 10^{5}$ | $5.45 \times 10^{9}$ | $-6.28 \times 10^{1}$ | $1.07 \times 10^{5}$ | $1.38 \times 10^{5}$ | 0.9999 |
|  |  | average | $1.06 \times 10^{5}$ | $30.3 \times 10^{8}$ | $7.19 \times 10^{1}$ | $10.2 \times 10^{4}$ | $1.38 \times 10^{5}$ |  |
|  | $2^{\text {nd }}$ | CR | $1.16 \times 10^{5}$ | $3.64 \times 10^{7}$ | $-1.06 \times 10^{2}$ | $1.11 \times 10^{5}$ | $1.77 \times 10^{5}$ | 0.9985 |
|  |  | HM | $1.29 \times 10^{5}$ | $6.60 \times 10^{8}$ | $-8.22 \times 10^{1}$ | $1.24 \times 10^{5}$ | $1.75 \times 10^{5}$ | 0.9983 |
|  |  | average | $1.23 \times 10^{5}$ | $34.8 \times 10^{7}$ | $-9.41 \times 10^{1}$ | $1.18 \times 10^{5}$ | $1.76 \times 10^{5}$ |  |

## REFERENCES

1. E. Martin, R. Weigand, A.Pardo, J. Lumines., 68, 157 (1996).
2. V. Gruzinskii, A. Kukhta, G. Shakkah, J. Appl. Spectr., 65, 444 (1998).
3. Z-F. Tao, X. Qian, Dyes and Pigments, 43, 139 (1999).
4. K. Dubey, R. Singh, K. Mizra, Indian J. Chem., 34B, 876 (1995).
5. M. M. de Souza, R. Correa, V. Cechinel Filho, I. Grabchev, V. Bojinov, Pharmazie, 56, 75 (2002).
6. A. D. Andricopulo, R.A. Yunes, V. Cechinel Filho, R. Correa, A.W. Filho, A.R. Santos, R.J. Nunes, Acta Farm. Bonaerenes, 17, 219 (1998).
7. X. Qian, K. Zhu, K. Chen, Dyes and Pigments, 11, 13 (1989).
8. E. Wolarz, H. Moryson, D. Bauman, Displays, 13, 171 (1992).
9. E. Mykowska, K. Jazwanska, W. Grupa, D. Bauman, Proc SPIE 3318, 378 (1998).
10. I. Grabchev, I. Moneva, E. Wolarz, D. Bauman, $Z$ Naturforsch, 51a, 1185 (1996).
11. S. K. Das, G. Krishnamoorthy and S. K. Dofra, Can. J. Chem., 78, 191 (2000).
12. G. Jones, J. A. C. Jimenez, Tetrahedron Lett., 40, 8551(1999).
13. G. Smith, R. C. Bott, A. D. Rae, A. C. Willis, Aust. J. Chem., 53, 531 (2000).
14. G. Smith, D. E. Lynch, R. C. Bott, Aust. J. Chem., 51, 159 (1998).
15. G. Smith, D. E. Lynch, K. A. Byriel, C. H. L. Kennard, J. Chem. Crystallogr., 27, 307 (1997).
16. M.S. Refat, S. A. Sadeek, H.M. Khater, Spectrochim. Acta Part A, 64(3), 778 (2006).
17. M.S. Refat, A.M. El-Didamony, Spectrochim. Acta Part A, 65(3-4), 732 (2006).
18. M.S. Refat, I. Grabchev, J.-M. Chovelon, G. Ivanova, Spectrochim. Acta Part A, 64(2), 435 (2006).
19. M.S. Refat, H. Al-Didamony Ahmed, L.A. ElZayat, Can. J. Anal. Sci. Spec., 51(3), 147 (2006).
20. M.S. Refat, H.M.A. Killa, I. Grabchev, M.Y. ElSayed, Spectrochim. Acta Part A, 68(1), 123 (2007).
21. M.S. Refat, L.A. El-Zayat, Okan Zafer Yeşilel, Polyhedron, 27(2), 475 (2008).
22. M.S. Refat, H.A. Ahmed, I. Grabchev, L.A. ElZayat, Spectrochim. Acta, 70(4), 907 (2008).
23. M.S. Refat, L.A. El-Zayat, Okan Zafer Yeşilel, Spectrochimica Acta Part A, 75, 745 (2010).
24. M.S. Refat, Hamdy Al. Didamony, Khlood M. Abou El-Nour, I. Grabchev, Lamia El-Zayat, Arab. J. Chem., in press.
25. 25 (a) I. Grabchev, Ch. Petkov, and V. Bojinov, Dyes and Pidments, 48, 239 (2001); (b) T

Konstantinova,.P. Meallier, I. Grabchev, Dyes and Pigments, 22, 191 (1993) ; (c) ) I. Grabchev, T Konstantinova,.P. Meallier, M. Popova, Dyes and Pigments, 28, 41 (1995).
26. F. M. Abou Attia, Farmaco, 55, 659 (2000).
27. D. A. Skoog, Principle of Instrumetal Analysis, $3^{\text {rd }}$ edn., Saunders College Publishing, New York, USA, 1985, Ch. 7.
28. R. Abu-Eittah, F. Al-Sugeir, Can. J. Chem., 54, 3705 (1976).
29. G. G. Aloisi, S. Pignataro, J. Chem. Soc., Faraday Trans., 69, 534 (1973).
30. A. El-Kourashy, Spectrochim. Acta., 37A, 399 (1981).
31. A.W. Coats, J.P. Redfern, Nature, 201, 68 (1964).
32. H.W. Horowitz, G. Metzger, Anal. Chem., 35, 1464 (1963).

# СИНТЕЗИ И ХАРАКТЕРИЗИРАНЕ НА КОМПЛЕКСИ С ПРЕНОС НА ЗАРЯДА НА 1,8НАФТАЛИМИДИ С РАЗЛИЧНИ АКЦЕПТОРИ 

М.С. Рефат ${ }^{\text {a,b }}$, Х.А. Дидамони ${ }^{\text {c }}$, Х.М. Абу Ел-Нур ${ }^{\text {d }}$, И. Грабчев ${ }^{\mathrm{e}}$, Л. Ел-Заят ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Департамент по химия, Факултет за наука, Университет в Порт Саид, Порт Саид 42111, Eгипет<br>${ }^{b}$ Департамент по химия Факултет за наука, Университет в Таиф, 888 Таиф, Кралство Саудитска Арабия ${ }^{c}$ Департамент по химия Факултет за наука, Университет в Загазиг, Загазиг, Египет<br>${ }^{\text {d }}$ Департамент по химия Факултет за наука, Университет "Суеики канал",Исмаилия, Египет<br>${ }^{e}$ Факултет по медицина, Софийски университет "Св. Климент Охридски" ул. Козяк 1, 1407 София, България<br>Постъпила на 24 април, 2010 г.; преработена на 7 юли, 2010 г.

(Резюме)
При взаимодействието на донори (4-заместени- $N$-алил- 1,8 -нафталимидни производни), и $\sigma$-акцептори (йод или $\pi$-акцептори) са получени пет нови комплекса с пренос на заряда (КПЗ) и детайлно са изследвани функционалните им характеристиките. Показано е, че се образуват комплекси с пренос на заряда с общи формули: [(донор)(акцептор) $)_{\mathrm{n}}$ ], при $\mathrm{n}=1$ в случая на комплексите [(донори)]I $\mathrm{I}_{2}$, [(донори)(DDQ)], $[($ донори $)(\mathrm{CLA})]$, $\left[\left(\right.\right.$ донори)(PA)] и [(донори)(TCNQ)] докато при $\mathrm{n}=2$ комплексите са $\left[(4 \mathrm{MAN})(\mathrm{TCNQ})_{2}\right]$, и $\left[(4 \mathrm{PAN})(\mathrm{TCNQ})_{2}\right]$.


[^0]:    * To whom all correspondence should be sent:

    E-mail: msrefat@yahoo.com

