26 research outputs found

    Dietary application for the management of patients with hemodialysis: A formative development study

    Get PDF
    © 2019, Korean Society of Medical Informatics. All rights reserved. Objectives: To describe the step-by-step person-centered, theory-based development of the KELA.AE app for Arabic speaking hemodialysis patients. Methods: A step-by-step person-driven theory-based approach was conducted to develop a self-monitoring and educational dietary app for hemodialysis patients. The development follows the Integration, Design, Assessment, and Sharing (IDEAS) framework. Qualitative, semi-structured interviews with 6 hemodialysis patients and 6 healthcare practitioners (dietitians and nephrologists) were performed to assess the need for an app, the willingness to use an app, and features desired in an app. Results: The KELA.AE app, which includes a self-monitoring feature, CKD-friendly recipes, and a theory-based, evidence-based educational feature was developed. Qualitative analysis of interviews revealed two predominant themes from patient interviews ‘Experience with the diet’, ‘App evaluation’, and one theme from interviews with healthcare practitioners ‘App evaluation’. Patients expressed frustration with current accessibility of dietary information along with the need for educational materials in the app. The review of the KELA.AE prototype was positive overall, and patients reported a willingness to use the app. Healthcare practitioners considered the app accurate, simple, and culturally sensitive but expressed concerns about app misuse and the replacement of healthcare practitioners. Conclusions: The KELA.AE app was found to be satisfactory and supportive of the participants’ needs. Changes were made to the app as suggested during the interviews

    Rational design of polymer-based absorbents: application to the fermentation inhibitor furfural

    Get PDF
    BACKGROUND: Reducing the amount of water-soluble fermentation inhibitors like furfural is critical for downstream bio-processing steps to biofuels. A theoretical approach for tailoring absorption polymers to reduce these pretreatment contaminants would be useful for optimal bioprocess design. RESULTS: Experiments were performed to measure aqueous furfural partitioning into polymer resins of 5 bisphenol A diglycidyl ether (epoxy) and polydimethylsiloxane (PDMS). Experimentally measured partitioning of furfural between water and PDMS, the more hydrophobic polymer, showed poor performance, with the logarithm of PDMS-to-water partition coefficient falling between −0.62 and −0.24 (95% confidence). In contrast, the fast setting epoxy was found to effectively partition furfural with the logarithm of the epoxy-to-water partition coefficient falling between 0.41 and 0.81 (95% confidence). Flory-Huggins theory is used to predict the partitioning of furfural into diverse polymer absorbents and is useful for predicting these results. CONCLUSION: We show that Flory-Huggins theory can be adapted to guide the selection of polymer adsorbents for the separation of low molecular weight organic species from aqueous solutions. This work lays the groundwork for the general design of polymers for the separation of a wide range of inhibitory compounds in biomass pretreatment streams
    corecore