28 research outputs found

    5G uplink interference simulations, analysis and solutions: The case of pico cells dense deployment

    Get PDF
    The launch of the new mobile network technology has paved the way for advanced and more productive industrial applications based on high-speed and low latency services offered by 5G. One of the key success points of the 5G network is the available diversity of cell deployment modes and the flexibility in radio resources allocation based on user’s needs. The concept of Pico cells will become the future of 5G as they increase the capacity and improve the network coverage at a low deployment cost. In addition, the short-range wireless transmission of this type of cells uses little energy and will allow dense applications for the internet of things. In this contribution, we present the advantages of using Pico cells and the characteristics of this type of cells in 5G networks. Then, we will do a simulation study of the interferences impact in uplink transmission in the case of PICO cells densified deployment. Finally, we will propose a solution for interference avoidance between pico cells that also allows flexible management of bands allocated to the users in uplink according to user’s density and bandwidth demand

    Exponential MLWDF (EXP-MLWDF) Downlink Scheduling Algorithm Evaluated in LTE for High Mobility and Dense Area Scenario

    Get PDF
    Nowadays, with the advent of smartphones, most of people started to make voice and video conference calls continuously even in a high mobility scenario, the bandwidth requirements have increased considerably, which can cause network congestion phenomena. To avoid network congestion problems and to support high mobility scenario, 3GPP has developed a new cellular standard based packet switching, termed LTE (Long Term Evolution). The purpose of this paper is to evaluate the performance of the new proposed algorithm, named Exponential Modified Largest Weighted Delay First ‘EXP-MLWDF’, for high mobility scenario and with the presence of a large number of active users, in comparison with the well-known algorithms such as a proportional fair algorithm (PF), Exponential Proportional Fairness (EXP/PF), Logarithm Rule (LOG-Rule), Exponential Rule (EXP-Rule) and Modified Largest Weighted Delay First (MLWDF). The performance evaluation is conducted in terms of system throughput, delay and PLR. Finally, it will be concluded that the proposed scheduler satisfies the quality of service (QoS) requirements of the real-time traffic in terms of packet loss ratio (PLR), average throughput and packet delay. Because of the traffic evolution, some key issues related to scheduling strategies that will be considered in the future requirements are discussed in this article

    Etude et conception d’un quadrupleur de fréquence en technologie MMIC pour des applications à 60 GHz

    Get PDF
    Dans ce papier, un circuit multiplicateur de fréquence par 4 est proposé. Ce quadrupleur fonctionne dans la bande millimétrique [56-64 GHz], il est conçu en technologie MMIC (Monolithic Microwave Integrated Circuit) en utilisant le procédé technologique PH15 de la fonderie UMS. Le circuit quadrupleur de fréquence sera utilisé pour générer des fréquences porteuses appartenant à la bande [56-64 GHZ] permettant de réaliser la démodulation du signal RF d’une liaison de communication sans fil en bande millimétrique. Ce quadrupleur fera partie du bloc récepteur d’une liaison de communication sans fil à très haut débit en bande millimétrique à 60 GHz

    A New Downlink Scheduling Algorithm Proposed for Real Time Traffic in LTE System

    Get PDF
    The Third Generation Partnership Project (3GPP) has developed a new cellular standard based packet switching allowing high data rate, 100 Mbps in Downlink and 50 Mbps in Uplink, and having the flexibility to be used in different bandwidths ranging from 1.4 MHz up to 20 MHz, this standard is termed LTE (Long Term Evolution). Radio Resource Management (RRM) procedure is one of the key design roles for improving LTE system performance, Packet scheduling is one of the RRM mechanisms and it is responsible for radio resources allocation, However, Scheduling algorithms are not defined in 3GPP specifications. Therefore, it gets a track interests for researchers. In this paper we proposed a new LTE scheduling algorithm and we compared its performances with other well known algorithms such as Proportional Fairness (PF), Modified Largest Weighted Delay First (MLWDF), and Exponential Proportional Fairness (EXPPF) in downlink direction. The simulation results shows that the proposed scheduler satisfies the quality of service (QoS) requirements of the real-time traffic in terms of packet loss ratio (PLR), average throughput and packet delay. This paper also discusses the key issues of scheduling algorithms to be considered in future traffic requirements

    ETUDE D’UNE TRANSMISSION DANS RESEAU ELECTRIQUE EMBARQUE PAR LA TECHNIQUE D’ETALEMENT SPECTRALE

    Get PDF
    Dans ce papier nous proposons une stratégie de communication pour le transfert d’information sur un canal de transmission CPL type véhicule, basée sur la modulation étalement spectral. Le réseau CPL pourrait fournir un support de communication bidirectionnel capable de transmettre des données en temps réel. Des simulations sont réalisées pour valider le modèle de transmission dans le canal type embarqué. Des résultats sur l’étude du taux d’erreur binaire sont présentés, ainsi que les paramètres importants de la chaîne de transmission

    Automatic target detection and localization using ultra-wideband radar

    Get PDF
    The pulse ultra-wide band (UWB) radar consists of switching of energy of very short duration in an ultra-broadband emission chain, and the UWB signal emitted is an ultrashort pulse, of the order of nanoseconds, without a carrier. These systems can indicate the presence and distances of a distant object, call a target, and determine its size, shape, speed, and trajectory. In this paper, we present a UWB radar system allowing the detection of the presence of a target and its localization in a road environment based on the principle of correlation of the reflected signal with the reference and the determination of its correlation peak

    High rejection self-oscillating up-conversion mixer for fifth-generation communications

    Get PDF
    This paper presents the design of a pseudomorphic high electron mobility transistor (pHEMT) self-oscillating mixer (SOM) for millimeter wave wireless communication systems. The 180° out-of-phase technique is chosen to both improve the desired lower sideband (LSB) signal and to achieve a satisfactory rejection of the unwanted signals (LO, USB and IF). This SOM is designed on the PH15 process of UMS foundry which is based on 0.15 µm GaAs pHEMT. The signal is up-converted from 2 GHz-IF frequency to 26 GHz-LSB frequency, using an autogenerated 28 GHz-LO signal. Simulations were performed using the advanced design system (ADS) workflow. They show 6.4 dB conversion gain and a signal rejection rate of 29.7 dB for the unwanted USB signal. the chip size is 3.6 mm2

    28 GHz balanced pHEMT VCO with low phase noise and high output power performance for 5G mm-Wave systems

    Get PDF
    This paper presents the study and design of a balanced voltage controlled oscillator VCO for 5G wireless communication systems. This circuit is designed in monolithic microwave integrated circuit (MMIC) technology using PH15 process from UMS foundry. The VCO ensures an adequate tuning range by a single-ended pHEMT varactors configuration. The simulation results show that this circuit delivers a sinusoidal signal of output power around 9 dBm with a second harmonic rejection between 25.87 and 33.83 dB, the oscillation frequency varies between 26.46 and 28.90 GHz, the phase noise is -113.155 and -133.167 dBc/Hz respectively at 1 MHz and 10 MHz offset and the Figure of Merit is -181.06 dBc/Hz. The power consumed by the VCO is 122 mW. The oscillator layout with bias and RF output pads occupies an area of 0.515 mm2

    New microstrip patch antenna array design at 28 GHz millimeter-wave for fifth-generation application

    Get PDF
    This paper presents a study and an array design consisting of two microstrip patch antennas connected in series in a 2×1 form. This antenna provides better performance for the fifth-generation (5G) wireless communication system. The microstrip line feeding technique realizes the design of this antenna. This feed offers the best bandwidth, is easy to model, and has low spurious radiation. The distance between the feed line and the patch can adapt to the antenna’s impedance. In addition, the antenna array proposed in this paper is designed and simulated using the high frequency structure simulator (HFSS) simulation software at the operating frequency of 28 GHz for the 5G band. The support material used is Rogers RT/duroid® 5880, with relative permittivity of 2.2, a thickness of h=0.5 mm, and a loss tangent of 0.0009. The simulation results obtained in this research paper are as: reflection coefficient: -35.91 dB, standing wave ratio (SWR): 1.032, bandwidth: 1.43 GHz, gain: 9.42 dB, directivity: 9.47 dB, radiated power: 29.94 dBm, accepted the power: 29.99 dBm, radiation efficiency: 29.95, efficiency: 99.83%. This proposed antenna array has achieved better performance than other antenna arrays recently published in scientific journals regarding bandwidth, beam gain, reflection coefficient, SWR, radiated power, accepted power, and efficiency. Therefore, this antenna array will likely become an important competitor for many uses within the 5G wireless applications

    Etude et Conception d’un Filtre Passe Haut à Deux Pôles pour les Applications à 60 GHz

    Get PDF
    Ce papier présente l’étude d’un filtre passe haut à deux pôles qui sera utilisé dans la conception d’un quadrupleur de fréquence en bande millimétrique à 60 GHz. La particularité de ce filtre est de faire passer les signaux appartenant à la bande millimétrique [56-64GHz] constituant la quatrième harmonique et de rejeter les autres signaux indésirables. La rejection obtenue est supérieure à 18 dB. Le filtre étudié est conçu en technologie MMIC (Monolithic Microwave Integrated Circuits) en utilisant le procédé PH15 de la fonderie UMS
    corecore