51 research outputs found
Growth Hormone Promotes Hair Cell Regeneration in the Zebrafish (Danio rerio) Inner Ear following Acoustic Trauma
BACKGROUND: Previous microarray analysis showed that growth hormone (GH) was significantly upregulated following acoustic trauma in the zebrafish (Danio rerio) ear suggesting that GH may play an important role in the process of auditory hair cell regeneration. Our objective was to examine the effects of exogenous and endogenous GH on zebrafish inner ear epithelia following acoustic trauma. METHODOLOGY/PRINCIPAL FINDINGS: We induced auditory hair cell damage by exposing zebrafish to acoustic overstimulation. Fish were then injected intraperitoneally with either carp GH or buffer, and placed in a recovery tank for either one or two days. Phalloidin-, bromodeoxyuridine (BrdU)-, and TUNEL-labeling were used to examine hair cell densities, cell proliferation, and apoptosis, respectively. Two days post-trauma, saccular hair cell densities in GH-treated fish were similar to that of baseline controls, whereas buffer-injected fish showed significantly reduced densities of hair cell bundles. Cell proliferation was greater and apoptosis reduced in the saccules, lagenae, and utricles of GH-treated fish one day following trauma compared to controls. Fluorescent in situ hybridization (FISH) was used to examine the localization of GH mRNA in the zebrafish ear. At one day post-trauma, GH mRNA expression appeared to be localized perinuclearly around erythrocytes in the blood vessels of the inner ear epithelia. In order to examine the effects of endogenous GH on the process of cell proliferation in the ear, a GH antagonist was injected into zebrafish immediately following acoustic trauma, resulting in significantly decreased cell proliferation one day post-trauma in all three zebrafish inner ear end organs. CONCLUSIONS/SIGNIFICANCE: Our results show that exogenous GH promotes post-trauma auditory hair cell regeneration in the zebrafish ear through stimulating proliferation and suppressing apoptosis, and that endogenous GH signals are present in the zebrafish ear during the process of auditory hair cell regeneration
Non-alcoholic fatty liver disease induces signs of Alzheimer’s disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model
Earth: Atmospheric Evolution of a Habitable Planet
Our present-day atmosphere is often used as an analog for potentially
habitable exoplanets, but Earth's atmosphere has changed dramatically
throughout its 4.5 billion year history. For example, molecular oxygen is
abundant in the atmosphere today but was absent on the early Earth. Meanwhile,
the physical and chemical evolution of Earth's atmosphere has also resulted in
major swings in surface temperature, at times resulting in extreme glaciation
or warm greenhouse climates. Despite this dynamic and occasionally dramatic
history, the Earth has been persistently habitable--and, in fact,
inhabited--for roughly 4 billion years. Understanding Earth's momentous changes
and its enduring habitability is essential as a guide to the diversity of
habitable planetary environments that may exist beyond our solar system and for
ultimately recognizing spectroscopic fingerprints of life elsewhere in the
Universe. Here, we review long-term trends in the composition of Earth's
atmosphere as it relates to both planetary habitability and inhabitation. We
focus on gases that may serve as habitability markers (CO2, N2) or
biosignatures (CH4, O2), especially as related to the redox evolution of the
atmosphere and the coupled evolution of Earth's climate system. We emphasize
that in the search for Earth-like planets we must be mindful that the example
provided by the modern atmosphere merely represents a single snapshot of
Earth's long-term evolution. In exploring the many former states of our own
planet, we emphasize Earth's atmospheric evolution during the Archean,
Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of
potential atmospheric trajectories into the distant future, many millions to
billions of years from now. All of these 'Alternative Earth' scenarios provide
insight to the potential diversity of Earth-like, habitable, and inhabited
worlds.Comment: 34 pages, 4 figures, 4 tables. Review chapter to appear in Handbook
of Exoplanet
Primary Progressive Aphasias and Their Contribution to the Contemporary Knowledge About the Brain-Language Relationship
Reverse shoulder arthroplasty in patients aged 65 years or younger: a systematic review of the literature
Intraoperative neuromonitoring techniques in the surgical management of acoustic neuromas
Australian sea-floor survey data, with images and expert annotations
This Australian benthic data set (BENTHOZ-2015) consists of an expert-annotated set of georeferenced benthic images and associated sensor data, captured by an autonomous underwater vehicle (AUV) around Australia. This type of data is of interest to marine scientists studying benthic habitats and organisms. AUVs collect georeferenced images over an area with consistent illumination and altitude, and make it possible to generate broad scale, photo-realistic 3D maps. Marine scientists then typically spend several minutes on each of thousands of images, labeling substratum type and biota at a subset of points. Labels from four Australian research groups were combined using the CATAMI classification scheme, a hierarchical classification scheme based on taxonomy and morphology for scoring marine imagery. This data set consists of 407,968 expert labeled points from around the Australian coast, with associated images, geolocation and other sensor data. The robotic surveys that collected this data form part of Australia's Integrated Marine Observing System (IMOS) ongoing benthic monitoring program. There is reuse potential in marine science, robotics, and computer vision research
- …
