85 research outputs found

    Soluble ST2 plasma concentrations predict mortality in severe sepsis

    Get PDF
    Patients with sepsis-after surviving the initial hyperinflammatory phase-display features consistent with immunosuppression, including hyporesponsiveness of immunocompetent cells to bacterial agents. Immunosuppression is thought to be facilitated by negative regulators of toll-like receptors, including membrane-bound ST2. We investigated the release of soluble ST2 (sST2), a decoy receptor that inhibits membrane-bound ST2 signaling, during sepsis. The study population comprised 95 patients with severe sepsis admitted to one of two intensive care units (ICUs) at the day the diagnosis of severe sepsis was made. Blood was obtained daily from admission (day 0) until day 7 and finally at day 14. Twenty-four healthy subjects served as controls. sST2 and cytokines were measured in serum. Mortality among patients was 34% in the ICU and 45% in the hospital. On admission, sepsis patients had higher sST2 levels [10,989 (7,871-15,342) pg/ml, geometric mean (95% confidence interval, CI)] than controls [55 (20-145) pg/ml, P < 0.0001]. Serum sST2 remained elevated in patients from day 0 to 14 and correlated with disease severity scores (P < 0.001) and cytokine levels on day 0 and during course of disease (P < 0.0001). Nonsurvivors displayed elevated sST2 levels compared with survivors of the intensive care unit (P < 0.0001). Sepsis results in sustained elevation of serum sST2 levels, which correlates with disease severity and mortalit

    Long term impact of systemic bacterial infection on the cerebral vasculature and microglia

    Get PDF
    Background: Systemic infection leads to generation of inflammatory mediators that result in metabolic and behavioural changes. Repeated or chronic systemic inflammation leads to a state of innate immune tolerance: a protective mechanism against over-activity of the immune system. In this study we investigated the immune adaptation of microglia and brain vascular endothelial cells in response to systemic inflammation or bacterial infection. Methods: Mice were given repeated doses of lipopolysaccharide (LPS) or a single injection of live Salmonella typhimurium. Inflammatory cytokines were measured in serum, spleen and brain, and microglial phenotype studied by immunohistochemistry.mice were infected with Salmonella typhimurium and subsequently challenged with a focal unilateral, intracerebral injection of LPS. Results: Repeated systemic LPS challenges resulted in increased brain IL-1?, TNF? and IL-12 levels, despite attenuated systemic cytokine production. Each LPS challenge induced significant changes in burrowing behaviour. In contrast, brain IL-1? and IL-12 levels in Salmonella typhimurium infected mice increased over three weeks, with high interferon-? levels in the circulation. Behavioural changes were only observed during the acute phase of the infection. Microglia and cerebral vasculature display an activated phenotype, and focal intracerebral injection of LPS 4 weeks after infection results in an exaggerated local inflammatory response when compared to non-infected mice. Conclusions: These studies reveal that the innate immune cells in the brain do not become tolerant to systemic infection, but are primed instead. This may lead to prolonged and damaging cytokine production that may have aprofound effect on the onset and/ or progression of pre-existing neurodegenerative disease.Humans and animals are regularly exposed to bacterial and viral pathogens that can have a considerable impact on our day-to-day living [1]. Upon infection, a set of immune, physiological, metabolic, and behavioural responses is initiated, representing a highly organized strategy of the organism to fight infection. Pro-inflammatory mediators generated in peripheral tissue communicate with the brain to modify behaviour [2], which aids our ability to fight and eliminate the pathogen. The communication pathways from the site of inflammation to the brain have been investigated in animal models and systemic challenge with lipopolysaccharide (LPS) or double stranded RNA (poly I:C) have been widely used to mimic aspects of bacterial and viral infection respectively [3, 4]. These studies have provided evidence that systemically generated inflammatory mediators signal to the brain via both neural and humoral routes, the latter signalling via the circumventricular organs or across the blood-brain barrier (BBB). Signalling into the brain via these routes evokes a response in the perivascular macrophages (PVMs) and microglia, which in turn synthesise diverse inflammatory mediators including cytokines, prostaglandins and nitric oxide [2, 5, 6]. Immune-to-brain communication also occurs in humans who show changes in mood and cognition following systemic inflammation or infection, which are associated with changes in activity in particular regions of the CNS [7-9]. While these changes are part of our normal homeostasis, it is increasingly evident that systemic inflammation has a detrimental effect in animals and also humans, that suffer from chronic neurodegeneration [10, 11]. We, and others, have shown that microglia become primed by on-going neuropathology in the brain, which increases their response towards subsequent inflammatory stimuli, including systemic inflammation [12, 13] Similar findings have been made in aged rodents [14, 15], where it has been shown that there is an exaggerated behavioural and innate immune response in the brainto systemic bacterial and viral infections, but the molecular mechanisms underlying the microglial priming under these conditions is far from understood.Humans and animals are rarely exposed to a single acute systemic inflammatory event: they rather encounter infectious pathogens that replicate in vivo or are exposed to low concentrations of LPS over a prolonged period of time. There is limited information on the impact of non-neurotrophic bacterial infections on the CNS and whether prolonged systemic inflammation will give rise to either a hyper-(priming) or hypo-(tolerance) innate immune response in the brain in response to a subsequent inflammatory stimulus.In this study we measured the levels of cytokines in the serum, spleen and brain as well as assessing sickness behaviour following a systemic bacterial infection using attenuated Salmonella typhimurium SL3261: we compared the effect to that of repeated LPS injections. We show that Salmonella typhimurium caused acute, transient behavioural changes and a robust peripheral immune response that peaks at day 7. Systemic inflammation resulted in a delayed increase in cytokine production in the brain and priming of microglia, which persisted up to four weeks post infection. These effects were not mimicked by repeated LPS challenges. It is well recognised that systemic bacterial and viral infections are significant contributors to morbidity in the elderly [16], and it has been suggested that primed microglia play a role in the increased clinical symptoms seen in patients with Alzheimer’s disease who have systemic inflammation or infections [11, 17]. We show here that systemic infection leads to prolonged cytokine synthesis in the brain and also priming of brain innate immune cells to a subsequent focal inflammatory challenge in the brain parenchyma

    Molecular evolution of the vertebrate TLR1 gene family - a complex history of gene duplication, gene conversion, positive selection and co-evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Toll-like receptors represent a large superfamily of type I transmembrane glycoproteins, some common to a wide range of species and others are more restricted in their distribution. Most members of the Toll-like receptor superfamily have few paralogues; the exception is the TLR1 gene family with four closely related genes in mammals TLR1, TLR2, TLR6 and TLR10, and four in birds TLR1A, TLR1B, TLR2A and TLR2B. These genes were previously thought to have arisen by a series of independent gene duplications. To understand the evolutionary pattern of the TLR1 gene family in vertebrates further, we cloned the sequences of TLR1A, TLR1B, TLR2A and TLR2B in duck and turkey, constructed phylogenetic trees, predicted codons under positive selection and identified co-evolutionary amino acid pairs within the TLR1 gene family using sequences from 4 birds, 28 mammals, an amphibian and a fish.</p> <p>Results</p> <p>This detailed phylogenetic analysis not only clarifies the gene gains and losses within the TLR1 gene family of birds and mammals, but also defines orthologues between these vertebrates. In mammals, we predict amino acid sites under positive selection in TLR1, TLR2 and TLR6 but not TLR10. We detect co-evolution between amino acid residues in TLR2 and the other members of this gene family predicted to maintain their ability to form functional heterodimers. In birds, we predict positive selection in the TLR2A and TLR2B genes at functionally significant amino acid residues. We demonstrate that the TLR1 gene family has mostly been subject to purifying selection but has also responded to directional selection at a few sites, possibly in response to pathogen challenge.</p> <p>Conclusions</p> <p>Our phylogenetic and structural analyses of the vertebrate TLR1 family have clarified their evolutionary origins and predict amino acid residues likely to be important in the host's defense against invading pathogens.</p

    Lung epithelium as a sentinel and effector system in pneumonia – molecular mechanisms of pathogen recognition and signal transduction

    Get PDF
    Pneumonia, a common disease caused by a great diversity of infectious agents is responsible for enormous morbidity and mortality worldwide. The bronchial and lung epithelium comprises a large surface between host and environment and is attacked as a primary target during lung infection. Besides acting as a mechanical barrier, recent evidence suggests that the lung epithelium functions as an important sentinel system against pathogens. Equipped with transmembranous and cytosolic pathogen-sensing pattern recognition receptors the epithelium detects invading pathogens. A complex signalling results in epithelial cell activation, which essentially participates in initiation and orchestration of the subsequent innate and adaptive immune response. In this review we summarize recent progress in research focussing on molecular mechanisms of pathogen detection, host cell signal transduction, and subsequent activation of lung epithelial cells by pathogens and their virulence factors and point to open questions. The analysis of lung epithelial function in the host response in pneumonia may pave the way to the development of innovative highly needed therapeutics in pneumonia in addition to antibiotics

    Viable Tumor Tissue Adherent to Needle Applicators after Local Ablation: A Risk Factor for Local Tumor Progression

    Get PDF
    Background. Local tumor progression (LTP) is a serious complication after local ablation of malignant liver tumors, negatively influencing patient survival. LTP may be the result of incomplete ablation of the treated tumor. In this study, we determined whether viable tumor cells attached to the needle applicator after ablation was associated with LTP and disease-free survival. Methods. In this prospective study, tissue was collected of 96 consecutive patients who underwent local liver ablations for 130 liver malignancies. Cells and tissue attached to the needle applicators were analyzed for viability using glucose-6-phosphate-dehydrogenase staining and autofluorescence intensity levels of H&E stained sections. Patients were followed-up until disease progression. Results. Viable tumor cells were found on the needle applicators after local ablation in 26.7% of patients. The type of needle applicator used, an open approach, and the omission of track ablation were significantly correlated with viable tumor tissue adherent to the needle applicator. The presence of viable cells was an independent predictor of LTP. The attachment of viable cells to the needle applicators was associated with a shorter time to LTP. Conclusions. Viable tumor cells adherent to the needle applicators were found after ablation of 26.7% of patients. An independent risk factor for viable cells adherent to the needle applicators is the omission of track ablation. We recommend using only RFA devices that have track ablation functionality. Adherence of viable tumor cells to the needle applicator after local ablation was an independent risk factor for LT

    Angeborene Defektproteinämien

    No full text
    corecore