11 research outputs found

    Body composition impacts appetite regulation in middle childhood. A prospective study of Norwegian community children

    Get PDF
    Background Research suggests a role for both fat mass and muscle mass in appetite regulation, but the longitudinal relationships between them have not yet been examined in children. The present study therefore aimed to explore the prospective relationships between fat mass, muscle mass and the appetitive traits food responsiveness and satiety responsiveness in middle childhood. Methods Food responsiveness and satiety responsiveness were measured using the parent-reported Children’s Eating Behavior Questionnaire in a representative sample of Norwegian 6 year olds, followed up at 8 and 10 years of age (n = 807). Body composition was measured by bioelectrical impedance. Results Applying a structural equation modeling framework we found that higher fat mass predicted greater increases in food responsiveness over time, whereas greater muscle mass predicted decreases in satiety responsiveness. This pattern was consistent both from ages 6 to 8 and from ages 8 to 10 years. Conclusions Our study is the first to reveal that fat mass and muscle mass predict distinct changes in different appetitive traits over time. Replication of findings in non-European populations are needed, as are studies of children in other age groups. Future studies should also aim to reveal the underlying mechanisms

    Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering

    No full text
    Porous polymeric scaffolds play a key role in most tissue-engineering strategies. A series of non-degrading porous scaffolds was prepared, based on bulk-copolymerisation of 1-vinyl-2-pyrrolidinone (NVP) and n-butyl methacrylate (BMA), followed by a particulate-leaching step to generate porosity. Biocompatibility of these scaffolds was evaluated in vitro and in vivo. Furthermore, the scaffold materials were studied using the so-called demineralised bone matrix (DBM) as an evaluation system in vivo. The DBM, which is essentially a part of a rat femoral bone after processing with mineral acid, provides a suitable environment for ectopic bone formation, provided that the cavity of the DBM is filled with bone marrow prior to subcutaneous implantation in the thoracic region of rats. Various scaffold materials, differing with respect to composition and, hence, hydrophilicity, were introduced into the centre of DBMs. The ends were closed with rat bone marrow, and ectopic bone formation was monitored after 4, 6, and 8 weeks, both through X-ray microradiography and histology. The 50:50 scaffold particles were found to readily accommodate formation of bone tissue within their pores, whereas this was much less the case for the more hydrophilic 70:30 counterpart scaffolds. New healthy bone tissue was encountered inside the pores of the 50:50 scaffold material, not only at the periphery of the constructs but also in the center. Active osteoblast cells were found at the bone-biomaterial interfaces. These data indicate that the hydrophobicity of the biomaterial is, most likely, an important design criterion for polymeric scaffolds which should promote the healing of bone defects. Furthermore, it is argued that stable, non-degrading porous biomaterials, like those used in this study, provide an important tool to expand our comprehension of the role of biomaterials in scaffold-based tissue engineering approaches. (c) 2004 Elsevier Ltd. All rights reserved

    Tailoring microstructure and physical properties of poly(vinylidene fluoride–hexafluoropropylene) porous films

    No full text
    This paper presents a systematic study for the production of poly(vinylidene fluoride-hexafluoropropylene), P(VDF-HFP), porous films using solvent evaporation (SE) and non-solvent induced phase separation (NIPS) techniques. Parameters such as volume fraction of the copolymer solution, film thickness, time exposure to air, non-solvent and temperature of the coagulation bath were investigated on the morphology, crystallization and mechanical properties of the samples. Films with different porous morphologies including homogeneous pore sizes, macrovoids and spherulites were obtained depending on the processing conditions, which in turn affect the wettability and mechanical properties of the material. Knowing that the phase content of the films also depends on the processing conditions, this paper shows that P(VDF-HFP) films with tailored porous morphology, electroactive phase content, hydrophobicity, cristallinity and mechanical properties can be achieved for a specific application using the adequate SE and NIPS techniques conditions.This work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST-C/FIS/UI607/2013 and PEST-C/ QUI/UIO686/2013 and the project Matepro –Optimizing Materials and Processes”, ref. NORTE-07-0124-FEDER 000037”, co-funded by the “Programa Operacional Regional do Norte” (ON.2 – O Novo Norte), under the “Quadro de Referência Estratégico Nacional” (QREN), through the “Fundo Europeu de Desenvolvimento Regional” (FEDER). The authors also thank FCT for financial support under project PTDC/CTM-NAN/112574/2009. V.F.C. thanks the FCT for the SFRH/BPD/98109/2013 grants
    corecore