15 research outputs found
Status Update and Interim Results from the Asymptomatic Carotid Surgery Trial-2 (ACST-2)
Objectives: ACST-2 is currently the largest trial ever conducted to compare carotid artery stenting (CAS) with carotid endarterectomy (CEA) in patients with severe asymptomatic carotid stenosis requiring revascularization. Methods: Patients are entered into ACST-2 when revascularization is felt to be clearly indicated, when CEA and CAS are both possible, but where there is substantial uncertainty as to which is most appropriate. Trial surgeons and interventionalists are expected to use their usual techniques and CE-approved devices. We report baseline characteristics and blinded combined interim results for 30-day mortality and major morbidity for 986 patients in the ongoing trial up to September 2012. Results: A total of 986 patients (687 men, 299 women), mean age 68.7 years (SD ± 8.1) were randomized equally to CEA or CAS. Most (96%) had ipsilateral stenosis of 70-99% (median 80%) with contralateral stenoses of 50-99% in 30% and contralateral occlusion in 8%. Patients were on appropriate medical treatment. For 691 patients undergoing intervention with at least 1-month follow-up and Rankin scoring at 6 months for any stroke, the overall serious cardiovascular event rate of periprocedural (within 30 days) disabling stroke, fatal myocardial infarction, and death at 30 days was 1.0%. Conclusions: Early ACST-2 results suggest contemporary carotid intervention for asymptomatic stenosis has a low risk of serious morbidity and mortality, on par with other recent trials. The trial continues to recruit, to monitor periprocedural events and all types of stroke, aiming to randomize up to 5,000 patients to determine any differential outcomes between interventions. Clinical trial: ISRCTN21144362. © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved
Improved Arterial Visualization in Cerebral CT Perfusion-Derived Arteriograms Compared with Standard CT Angiography: A Visual Assessment Study
BACKGROUND AND PURPOSE: Invasive cerebral DSA has largely been replaced by CTA, which is noninvasive but has a compromised arterial view due to superimposed bone and veins. The purpose of this study was to evaluate whether arterial visualization in CTPa is superior to standard CTA, which would eliminate the need for an additional CIA scan to assess arterial diseases and therefore reduce radiation dose. MATERIALS AND METHODS: In this study, we included 24 patients with subarachnoid hemorrhage for whom CTA and CTP were available. Arterial quality and presence of superimposed veins and bone in CTPa were compared with CTA and scored by 2 radiologists by using a VAS (0%-100%). Average VAS scores were determined and VAS scores per patient were converted to a 10-point NRS. Arterial visualization was considered to be improved when the highest rate (NRS 10, VAS > 90%) was scored for arterial quality, a RESULTS: Average VAS scores in the proximal area were 94% (arterial quality), 4% (presence of bone), and 7% (presence of veins). In this area, the sign test showed that a significant number of cases scored NRS 10 for arterial quality (P < .02) and NRS 1 for the presence of superimposed veins and bone (P < .01). CONCLUSIONS: Cerebral CTPa shows improved arterial visualization in the proximal area compared with CTA, with similar arterial quality but no superimposed bone and veins
Quantitative multiparametric MRI in uveal melanoma: increased tumor permeability may predict monosomy 3
Introduction: Uveal melanoma is a rare intraocular tumor with heterogeneous biological behavior, and additional noninvasive markers that may predict outcome are needed. Diffusion- and perfusion-weighted imaging may prove useful but have previously been limited in their ability to evaluate ocular tumors. Our purpose was to show the feasibility and potential value of a multiparametric (mp-) MRI protocol employing state of the art diffusion- and perfusion-weighted imaging techniques. Methods: Sixteen patients with uveal melanoma were imaged with mp-MRI. Multishot readout-segmented echoplanar diffusion-weighted imaging, quantitative dynamic contrast-enhanced (DCE) MR perfusion imaging, and anatomic sequences were obtained. Regions of interest (ROIs) were drawn around tumors for calculation of apparent diffusion coefficient (ADC) and perfusion metrics (Ktrans, ve, kep, and vp). A generalized linear fit model was used to compare various MRI values with the American Joint Commission on Cancer (AJCC) tumor group and monosomy 3 status with significance set at P < 0.05. Results: mp-MRI was performed successfully in all cases. MRI tumor height (mean [standard deviation]) was 6.5 mm (3.0). ROI volume was 278 mm3 (222). ADC was 1.07 (0.27) × 10–3 mm2/s. DCE metrics were Ktrans 0.085/min (0.063), ve 0.060 (0.052), kep 1.20/min (0.32), and vp 1.48 % (0.82). Patients with >33 % monosomy 3 had higher Ktrans and higher ve values than those with disomy 3 or ≤33 % monosomy (P < 0.01). There were no significant differences between ADC (P = 0.07), kep (P = 0.37), and vp with respect to monosomy 3. Conclusion: mp-MRI for ocular tumor imaging using multishot EPI DWI and quantitative DCE perfusion is technically feasible. mp-MRI may help predict monosomy 3 in uveal melanoma