228 research outputs found

    Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence.

    Get PDF
    BACKGROUND\ud \ud Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed.\ud \ud METHODS\ud \ud The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510) (2 × 10(10) conidia m(-2)) applied on mud panels (simulating walls of traditional Tanzanian houses), black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily.\ud \ud RESULTS\ud \ud All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p < 0.001). Mosquitoes exposed to B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14), and a higher risk than those exposed to treated polyester netting (p < 0.001). Residual activity of fungi declined over time; however, conidia remained pathogenic at 28 d post application, and were able to infect and kill 73 - 82% of mosquitoes within 14 d.\ud \ud CONCLUSION\ud \ud Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field

    Improving the delivery and efficiency of fungus-impregnated cloths for control of adult Aedes aegypti using a synthetic attractive lure

    Get PDF
    Abstract Background Entomopathogenic fungi are highly promising agents for controlling Aedes aegypti mosquitoes. Deploying fungus-impregnated black cloths in PET traps efficiently reduced Ae. aegypti female survival rates under intra-domicile conditions. With the aim of further increasing the effectiveness of the traps, the addition of attractive lures to fungus-impregnated traps was evaluated. Methods Black cloths were suspended inside 2 l plastic bottles called “PET traps”. These traps were placed in rooms simulating human residences. The first experiments evaluated the attraction of mosquitoes to PET traps with black cloths covered in adhesive film with and without synthetic lures (AtrAedes™). Traps were left in the test rooms for either 24 or 48 h. The attractiveness of the lures over time was also evaluated. The efficiency of PET traps with fungus-impregnated black cloths associated with lures was compared to that of traps without lures. Results The highest percentage of captured mosquitoes (31 and 66%) were observed in PET traps with black cloths covered in adhesive film + attractive lure maintained in test rooms for 24 h and 48 h, respectively. Black cloths covered in adhesive film captured 17 or 36% of the mosquitoes at 24 h and 48 h, respectively. The attractiveness of the lures fell gradually over time, capturing 37% after 5 days on the bench and 22% of the mosquitoes after 30 days exposure to ambient conditions. Associating attractive synthetic lures with black cloths impregnated with M. anisopliae placed in test rooms for 120 h reduced mean survival to 32%, whilst black cloths impregnated with M. anisopliae without lures resulted in a 48% survival rate. Using Beauveria bassiana in the traps resulted in a 52% reduction in mosquito survival, whilst combining Beauveria and AtrAedes resulted in a 36% survival rate. PET traps impregnated with fungus + AtrAedes resulted in similar reductions in survival when left in the rooms for 24, 48, 72 or 120 h. Conclusions AtrAedes increased attractiveness of PET traps with black cloths under intra-domicile conditions and when associated with M. anisopliae or B. bassiana, significantly reduced Aedes survival. This strategy will reduce the number of PET traps necessary per household

    Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Get PDF
    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions

    Phospho-ERK and AKT status, but not KRAS mutation status, are associated with outcomes in rectal cancer treated with chemoradiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>KRAS </it>mutations may predict poor response to radiotherapy. Downstream events from <it>KRAS</it>, such as activation of <it>BRAF</it>, AKT and ERK, may also confer prognostic information but have not been tested in rectal cancer (RC). Our objective was to explore the relationships of <it>KRAS </it>and <it>BRAF </it>mutation status with p-AKT and p-ERK and outcomes in RC.</p> <p>Methods</p> <p>Pre-radiotherapy RC tumor biopsies were evaluated. <it>KRAS </it>and <it>BRAF </it>mutations were assessed by pyrosequencing; p-AKT and p-ERK expression by immunohistochemistry.</p> <p>Results</p> <p>Of 70 patients, mean age was 58; 36% stage II, 56% stage III, and 9% stage IV. Responses to neoadjuvant chemoradiotherapy: 64% limited, 19% major, and 17% pathologic complete response. 64% were <it>KRAS </it>WT, 95% were <it>BRAF </it>WT. High p-ERK levels were associated with improved OS but not for p-AKT. High levels of p-AKT and p-ERK expression were associated with better responses. <it>KRAS </it>WT correlated with lower p-AKT expression but not p-ERK expression. No differences in OS, residual disease, or tumor downstaging were detected by <it>KRAS </it>status.</p> <p>Conclusions</p> <p><it>KRAS </it>mutation was not associated with lesser response to chemoradiotherapy or worse OS. High p-ERK expression was associated with better OS and response. Higher p-AKT expression was correlated with better response but not OS.</p

    Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality

    Get PDF
    Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti larvae in a relatively short time (12-24hrs), significantly quicker than when larvae were exposed to conidia. This study shows that selecting the appropriate form of inoculum is important for efficacious control of disease vectors such as Ae. aegypti

    Saliva levels of Abeta1-42 as potential biomarker of Alzheimer's disease: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simple, non-invasive tests for early detection of degenerative dementia by use of biomarkers are urgently required. However, up to the present, no validated extracerebral diagnostic markers for the early diagnosis of Alzheimer disease (AD) are available. The clinical diagnosis of probable AD is made with around 90% accuracy using modern clinical, neuropsychological and imaging methods. A biochemical marker that would support the clinical diagnosis and distinguish AD from other causes of dementia would therefore be of great value as a screening test. A total of 126 samples were obtained from subjects with AD, and age-sex-matched controls. Additionally, 51 Parkinson's disease (PD) patients were used as an example of another neurodegenerative disorder. We analyzed saliva and plasma levels of β amyloid (Aβ) using a highly sensitive ELISA kit.</p> <p>Results</p> <p>We found a small but statistically significant increase in saliva Aβ<sub>42 </sub>levels in mild AD patients. In addition, there were not differences in saliva concentration of Aβ<sub>42 </sub>between patients with PD and healthy controls. Saliva Aβ<sub>40 </sub>expression was unchanged within all the studied sample. The association between saliva Aβ<sub>42 </sub>levels and AD was independent of established risk factors, including age or Apo E, but was dependent on sex and functional capacity.</p> <p>Conclusions</p> <p>We suggest that saliva Aβ<sub>42 </sub>levels could be considered a potential peripheral marker of AD and help discrimination from other types of neurodegenerative disorders. We propose a new and promising biomarker for early AD.</p

    Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants:a systematic review and meta-analysis

    Get PDF
    Abstract Objectives The aim of this review was to systematically evaluate the failure rates of miniscrews related to their specific insertion site and explore the insertion site dependent risk factors contributing to their failure. Search methods An electronic search was conducted in the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Knowledge, Scopus, MEDLINE and PubMed up to October 2017. A comprehensive manual search was also performed. Eligibility criteria Randomised clinical trials and prospective non-randomised studies, reporting a minimum of 20 inserted miniscrews in a specific insertion site and reporting the miniscrews’ failure rate in that insertion site, were included. Data collection and analysis Study selection, data extraction and quality assessment were performed independently by two reviewers. Studies were sub-grouped according to the insertion site, and the failure rates for every individual insertion site were analysed using a random-effects model with corresponding 95% confidence interval. Sensitivity analyses were performed in order to test the robustness of the reported results. Results Overall, 61 studies were included in the quantitative synthesis. Palatal sites had failure rates of 1.3% (95% CI 0.3–6), 4.8% (95% CI 1.6–13.4) and 5.5% (95% CI 2.8–10.7) for the midpalatal, paramedian and parapalatal insertion sites, respectively. The failure rates for the maxillary buccal sites were 9.2% (95% CI 7.4–11.4), 9.7% (95% CI 5.1–17.6) and 16.4% (95% CI 4.9–42.5) for the interradicular miniscrews inserted between maxillary first molars and second premolars and between maxillary canines and lateral incisors, and those inserted in the zygomatic buttress respectively. The failure rates for the mandibular buccal insertion sites were 13.5% (95% CI 7.3–23.6) and 9.9% (95% CI 4.9–19.1) for the interradicular miniscrews inserted between mandibular first molars and second premolars and between mandibular canines and first premolars, respectively. The risk of failure increased when the miniscrews contacted the roots, with a risk ratio of 8.7 (95% CI 5.1–14.7). Conclusions Orthodontic miniscrew implants provide acceptable success rates that vary among the explored insertion sites. Very low to low quality of evidence suggests that miniscrews inserted in midpalatal locations have a failure rate of 1.3% and those inserted in the zygomatic buttress have a failure rate of 16.4%. Moderate quality of evidence indicates that root contact significantly contributes to the failure of interradicular miniscrews placed between the first molars and second premolars. Results should be interpreted with caution due to methodological drawbacks in some of the included studies
    corecore