9 research outputs found

    Antibiotic Resistance Genes in the Bacteriophage DNA Fraction of Environmental Samples

    Get PDF
    Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, β-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to β-lactam antibiotics is conferred by β-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to β-lactam antibiotics, namely two β-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment

    Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy

    Get PDF

    The genome and proteome of the Kluyvera bacteriophage Kvp1--another member of the T7-like Autographivirinae

    No full text
    BACKGROUND: Kluyvera, a genus within the family Enterobacteriaceae, is an infrequent cause of human infections. Bacteriophage Kvp1, the only bacteriophage isolated for one of its species, Kluyvera cryocrescens, is a member of the viral family Podoviridae. RESULTS: The genome of Kvp1, the first Kluyvera cryocrescens-specific bacteriophage, was sequenced using pyrosequencing (454 technology) at the McGill University and Genome Québec Innovation Centre. The two contigs were closed using PCR and the sequence of the terminal repeats completed by primer walking off the phage DNA. The phage structural proteome was investigated by SDS-PAGE and mass spectrometry. CONCLUSION: At 39,472 bp, the annotated genome revealed a closer relationship to coliphage T3 than T7 with Kvp1 containing homologs to T3 early proteins S-adenosyl-L-methionine hydrolase (0.3) and protein kinase (0.7). The quantitative nature of the relationships between Kvp1 and the other members of the T7-like virus genus (T7, T3, phiA1122, phiYeO3-12, Berlin, K1F, VP4 and gh-1) was confirmed using CoreGenes.status: publishe

    The Potential for Stem Cell Therapy in Diabetes

    No full text

    IGF-1 and Insulin-Receptor Signalling in Insulin-Secreting Cells: From Function to Survival

    No full text

    IGF-1 and Insulin Receptor Signalling in Insulin-Secreting Cells: From Function to Survival

    No full text
    corecore