5 research outputs found

    The family business, adversity and change: A dynamic capabilities and knowledge-based approach

    Get PDF
    While the growth of family business research is undisputable, knowledge gaps have been recognised, notably, regarding the lack of a strategic management theory, and a predominance of quantitative over qualitative methods when researchers examine family businesses. This study seeks to address these research gaps. First, the study proposes a framework based on the knowledge-based view framework and the dynamic capabilities approach to examine adaptation to adversity and to a changing business environment through the case of Hawkshead Relish Company, a family firm operating in the United Kingdom. Second, it employs a qualitative approach. Face-to-face interviews, on-site observations, and archival information of the firm helped reveal the association between dynamic capabilities, knowledge acquisition, networking, and innovation. Sensing, seizing, and transforming were manifested within and through the organisation’s strategy and practice. Overall, the framework emphasises how the above associations are applicable to family firms when adapting to adversity and change

    Digenean trematodes infecting the tropical abalone Haliotis asinina have species-specific cercarial emergence patterns that follow daily or semilunar spawning cycles

    No full text
    Approximately 1-2% of the tropical abalone Haliotis asinina inhabiting Heron Island Reef are infected with opecoelid digeneans. These largely inhabit the haemocoel surrounding the cerebral ganglia and digestive gland-gonad complex, and infected abalone typically have significantly reduced or ablated gonads. Observations of infected abalone reveal two distinct cercarial emergence patterns, one which correlates tightly with the abalone's highly regular and synchronous fortnightly spawning cycle, and the other which occurs in a circadian pattern. The former appears to be a novel emergence strategy not previously observed in digeneans. While the cercariae in all abalone are morphologically indistinguishable, comparison of sequences from the internal transcribed spacer 2 (ITS 2) region of the ribosomal DNA reveals a 5.7% difference between cercariae displaying different emergence patterns, indicating these are two distinct species that probably belong to the same genus. The ITS 2 sequences of the species with the daily emergence pattern are identical to that of an undescribed adult opecoelid from the gut of the barramundi cod, Cromileptes altivelis. Combined molecular, morphological and emergence data suggest that while these opecoelid cercariae use the same first intermediate host and are closely related species-members of the genus Allopodocotyle-they fill different ecological niches that are likely to include different definitive hosts

    Molecular characterization and analysis of a truncated serotonin receptor gene expressed in neural and reproductive tissues of abalone

    Full text link
    In molluscs, the neurotransmitter serotonin (5-HT) has been linked to a variety of biological roles including gamete maturation and spawning. The possible involvement of 5-HT in abalone gamete release was demonstrated by a dose-dependent increase in Haliotis rubra gonad contractile bioactivity following 5-HT stimulation. Physiological functions associated with 5-HT, are mediated through binding to 5-HT receptors. A cDNA encoding a putative 5-HT receptor consisting of 359 amino acids was isolated from the tropical abalone H. asinina, termed 5-HT1 ha. The 5-HT1 ha shares G-protein-coupled receptor motifs with metazoan 5-HT receptors, including predicted transmembrane domains, active sites for protein kinase action, and N-linked glycosylation sites. However, the third intracellular loop of 5-HT1 ha is relatively short, and only six transmembrane domains are predicted, implying a truncated receptor. Phylogenetic analysis with known 5-HT receptor genes suggests that 5-HT1 ha belongs to the type 1 5-HT receptor family. Expression analysis by RT-PCR showed that 5-HT1 ha&nbsp; mRNA was present in all tissues examined, including the neural ganglia and gonad tissues. Immunocytochemistry revealed the presence of 5-HT1 ha specifically within the soma of neuronal cells located in the outer cortex of both cerebral and pleuropedal ganglia. In ovarian and testicular tissues, 5-HT1 ha immunoreactivity was observed in epithelial cells of the outer capsule and connective tissue of the trabeculae to which the gamete follicles adhere. Whether this receptor transcript is translated to a functional protein needs to be verified, but if so, it could play a role in reproduction.<br /

    Convergent antifouling activities of structurally distinct bioactive compounds synthesized within two sympatric Haliclona Demosponges

    No full text
    A wide range of sessile and sedentary marine invertebrates synthesize secondary metabolites that have potential as industrial antifoulants. These antifoulants tend to differ in structure, even between closely related species. Here, we determine if structurally divergent secondary metabolites produced within two sympatric haliclonid demosponges have similar effects on the larvae of a wide range of benthic competitors and potential fouling metazoans (ascidians, molluscs, bryozoans, polychaetes, and sponges). The sponges Haliclona sp. 628 and sp. 1031 synthesize the tetracyclic alkaloid, haliclonacyclamine A (HA), and the long chain alkyl amino alcohol, halaminol A (LA), respectively. Despite structural differences, HA and LA have identical effects on phylogenetically disparate ascidian larvae, inducing rapid larval settlement but preventing subsequent metamorphosis at precisely the same stage. HA and LA also have similar effects on sponge, polychaete, gastropod and bryozoan larvae, inhibiting both settlement and metamorphosis. Despite having identical roles in preventing fouling and colonisation, HA and LA differentially affect the physiology of cultured HeLa human cells, indicating they have different molecular targets. From these data, we infer that the secondary metabolites within marine sponges may emerge by varying evolutionary and biosynthetic trajectories that converge on specific ecological roles
    corecore