71 research outputs found

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    Mapping the Spatio-Temporal Pattern of the Mammalian Target of Rapamycin (mTOR) Activation in Temporal Lobe Epilepsy

    Get PDF
    Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (n = 13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE

    Once upon a time the cell membranes: 175 years of cell boundary research

    Get PDF

    Effectiveness of oncogenetics training on general practitioners' consultation skills: a randomized controlled trial

    Get PDF
    Contains fulltext : 137892.pdf (publisher's version ) (Open Access)PURPOSE: General practitioners are increasingly called upon to deliver genetic services and could play a key role in translating potentially life-saving advancements in oncogenetic technologies to patient care. If general practitioners are to make an effective contribution in this area, their genetics competencies need to be upgraded. The aim of this study was to investigate whether oncogenetics training for general practitioners improves their genetic consultation skills. METHODS: In this pragmatic, blinded, randomized controlled trial, the intervention consisted of a 4-h training (December 2011 and April 2012), covering oncogenetic consultation skills (family history, familial risk assessment, and efficient referral), attitude (medical ethical issues), and clinical knowledge required in primary-care consultations. Outcomes were measured using observation checklists by unannounced standardized patients and self-reported questionnaires. RESULTS: Of 88 randomized general practitioners who initially agreed to participate, 56 completed all measurements. Key consultation skills significantly and substantially improved; regression coefficients after intervention were equivalent to 0.34 and 0.28 at 3-month follow-up, indicating a moderate effect size. Satisfaction and perceived applicability of newly learned skills were highly scored. CONCLUSION: The general practitioner-specific training proved to be a feasible, satisfactory, and clinically applicable method to improve oncogenetics consultation skills and could be used as an educational framework to inform future training activities with the ultimate aim of improving medical care

    Morphologically homogeneous red blood cells present a heterogeneous response to hormonal stimulation

    Get PDF
    Red blood cells (RBCs) are among the most intensively studied cells in natural history, elucidating numerous principles and ground-breaking knowledge in cell biology. Morphologically, RBCs are largely homogeneous, and most of the functional studies have been performed on large populations of cells, masking putative cellular variations. We studied human and mouse RBCs by live-cell video imaging, which allowed single cells to be followed over time. In particular we analysed functional responses to hormonal stimulation with lysophosphatidic acid (LPA), a signalling molecule occurring in blood plasma, with the Ca(2+) sensor Fluo-4. Additionally, we developed an approach for analysing the Ca(2+) responses of RBCs that allowed the quantitative characterization of single-cell signals. In RBCs, the LPA-induced Ca(2+) influx showed substantial diversity in both kinetics and amplitude. Also the age-classification was determined for each particular RBC and consecutively analysed. While reticulocytes lack a Ca(2+) response to LPA stimulation, old RBCs approaching clearance generated robust LPA-induced signals, which still displayed broad heterogeneity. Observing phospatidylserine exposure as an effector mechanism of intracellular Ca(2+) revealed an even increased heterogeneity of RBC responses. The functional diversity of RBCs needs to be taken into account in future studies, which will increasingly require single-cell analysis approaches. The identified heterogeneity in RBC responses is important for the basic understanding of RBC signalling and their contribution to numerous diseases, especially with respect to Ca(2+) influx and the associated pro-thrombotic activity
    corecore