69 research outputs found

    Relationship between Tibial conformation, cage size and advancement achieved in TTA procedure

    Get PDF
    Previous studies have suggested that there is a theoretical discrepancy between the cage size and the resultant tibial tuberosity advancement, with the cage size consistently providing less tibial tuberosity advancement than predicted. The purpose of this study was to test and quantify this in clinical cases. The hypothesis was that the advancement of the tibial tuberosity as measured by the widening of the proximal tibia at the tibial tuberosity level after a standard TTA, will be less than the cage sized used, with no particular cage size providing a relative smaller or higher under-advancement, and that the conformation of the proximal tibia will have an influence on the amount of advancement achieved

    Tissue-engineered tracheal replacement in a child: a 4-year follow-up study

    Get PDF
    In 2010, a tissue-engineered trachea was transplanted into a 10-year-old child using a decellularized deceased donor trachea repopulated with the recipient's respiratory epithelium and mesenchymal stromal cells. We report the child's clinical progress, tracheal epithelialization and costs over the 4 years. A chronology of events was derived from clinical notes and costs determined using reference costs per procedure. Serial tracheoscopy images, lung function tests and anti-HLA blood samples were compared. Epithelial morphology and T cell, Ki67 and cleaved caspase 3 activity were examined. Computational fluid dynamic simulations determined flow, velocity and airway pressure drops. After the first year following transplantation, the number of interventions fell and the child is currently clinically well and continues in education. Endoscopy demonstrated a complete mucosal lining at 15 months, despite retention of a stent. Histocytology indicates a differentiated respiratory layer and no abnormal immune activity. Computational fluid dynamic analysis demonstrated increased velocity and pressure drops around a distal tracheal narrowing. Cross-sectional area analysis showed restriction of growth within an area of in-stent stenosis. This report demonstrates the long-term viability of a decellularized tissue-engineered trachea within a child. Further research is needed to develop bioengineered pediatric tracheal replacements with lower morbidity, better biomechanics and lower costs

    Pervasive and opposing effects of Unpredictable Chronic Mild Stress (UCMS) on hippocampal gene expression in BALB/cJ and C57BL/6J mouse strains

    Get PDF
    Background: BALB/cJ is a strain susceptible to stress and extremely susceptible to a defective hedonic impact in response to chronic stressors. The strain offers much promise as an animal model for the study of stress related disorders. We present a comparative hippocampal gene expression study on the effects of unpredictable chronic mild stress on BALB/cJ and C57BL/6J mice. Affymetrix MOE 430 was used to measure hippocampal gene expression from 16 animals of two different strains (BALB/cJ and C57BL/6J) of both sexes and subjected to either unpredictable chronic mild stress (UCMS) or no stress. Differences were statistically evaluated through supervised and unsupervised linear modelling and using Weighted Gene Coexpression Network Analysis (WGCNA). In order to gain further understanding into mechanisms related to stress response, we cross-validated our results with a parallel study from the GENDEP project using WGCNA in a meta-analysis design. Results: The effects of UCMS are visible through Principal Component Analysis which highlights the stress sensitivity of the BALB/cJ strain. A number of genes and gene networks related to stress response were uncovered including the Creb1 gene. WGCNA and pathway analysis revealed a gene network centered on Nfkb1. Results from the meta-analysis revealed a highly significant gene pathway centred on the Ubiquitin C (Ubc) gene. All pathways uncovered are associated with inflammation and immune response. Conclusions: The study investigated the molecular mechanisms underlying the response to adverse environment in an animal model using a GxE design. Stress-related differences were visible at the genomic level through PCA analysis highlighting the high sensitivity of BALB/cJ animals to environmental stressors. Several candidate genes and gene networks reported are associated with inflammation and neurogenesis and could serve to inform candidate gene selection in human studies and provide additional insight into the pathology of Major Depressive Disorder

    The contribution of X-linked coding variation to severe developmental disorders

    Get PDF
    Over 130 X-linked genes have been robustly associated with developmental disorders, and X-linked causes have been hypothesised to underlie the higher developmental disorder rates in males. Here, we evaluate the burden of X-linked coding variation in 11,044 developmental disorder patients, and find a similar rate of X-linked causes in males and females (6.0% and 6.9%, respectively), indicating that such variants do not account for the 1.4-fold male bias. We develop an improved strategy to detect X-linked developmental disorders and identify 23 significant genes, all of which were previously known, consistent with our inference that the vast majority of the X-linked burden is in known developmental disorder-associated genes. Importantly, we estimate that, in male probands, only 13% of inherited rare missense variants in known developmental disorder-associated genes are likely to be pathogenic. Our results demonstrate that statistical analysis of large datasets can refine our understanding of modes of inheritance for individual X-linked disorders

    Global urban environmental change drives adaptation in white clover.

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    CXCR5<sup>+</sup> follicular cytotoxic T cells control viral infection in B cell follicles

    Get PDF
    During unresolved infections, some viruses escape immunological control and establish a persistant reservoir in certain cell types, such as human immunodeficiency virus (HIV), which persists in follicular helper T cells (TFH cells), and Epstein-Barr virus (EBV), which persists in B cells. Here we identified a specialized group of cytotoxic T cells (TC cells) that expressed the chemokine receptor CXCR5, selectively entered B cell follicles and eradicated infected TFH cells and B cells. The differentiation of these cells, which we have called 'follicular cytotoxic T cells' (TFC cells), required the transcription factors Bcl6, E2A and TCF-1 but was inhibited by the transcriptional regulators Blimp1, Id2 and Id3. Blimp1 and E2A directly regulated Cxcr5 expression and, together with Bcl6 and TCF-1, formed a transcriptional circuit that guided TFC cell development. The identification of TFC cells has far-reaching implications for the development of strategies to control infections that target B cells and TFH cells and to treat B cell–derived malignancies

    Validation of a modified 9-integer-unit body condition score system and a computer-based modelling tool to estimate body condition in pet dogs

    Get PDF
    We show that information about social relationships can be used to improve user-level sentiment analysis. The main motivation behind our approach is that users that are somehow "connected" may be more likely to hold similar opinions; therefore, relationship information can complement what we can extract about a user's viewpoints from their utterances. Employing Twitter as a source for our experimental data, and working within a semi-supervised framework, we propose models that are induced either from the Twitter follower/followee network or from the network in Twitter formed by users referring to each other using "@" mentions. Our transductive learning results reveal that incorporating social-network information can indeed lead to statistically significant sentiment-classification improvements over the performance of an approach based on Support Vector Machines having access only to textual features.Comment: Proceedings of KDD 2011. Poste
    corecore