81 research outputs found

    Emerging coordination mechanisms for multi-party IPR holders: linking research with standardization

    Get PDF
    The standards setting process relies to an increasing degree on successfully integrating up-to-date research and development results (R&D). The successful interaction between research and standards can provide important social benefits. But, to do so, a number of challenges need to be faced. One key and persistent challenge is to provide the conditions in which the cross-purposes of formal standards-setting bodies and intellectual property rights can equitably be accommodated. This means balancing the collective gains to be reaped from the elaboration of a common standard against the individual gains to be allocated to relevant individual rights-holders. This discussion paper focuses on approaches to the reemerging tension between intellectual-property-rights and standards. It points to the importance that successful approaches can have to improve the interaction the between research and standardization activities. It then goes on to consider the (re)emergence of two approaches that are indicative of the changing relationship between intellectual property rights and standards-setting bodies

    Roto-Translation Covariant Convolutional Networks for Medical Image Analysis

    Full text link
    We propose a framework for rotation and translation covariant deep learning using SE(2)SE(2) group convolutions. The group product of the special Euclidean motion group SE(2)SE(2) describes how a concatenation of two roto-translations results in a net roto-translation. We encode this geometric structure into convolutional neural networks (CNNs) via SE(2)SE(2) group convolutional layers, which fit into the standard 2D CNN framework, and which allow to generically deal with rotated input samples without the need for data augmentation. We introduce three layers: a lifting layer which lifts a 2D (vector valued) image to an SE(2)SE(2)-image, i.e., 3D (vector valued) data whose domain is SE(2)SE(2); a group convolution layer from and to an SE(2)SE(2)-image; and a projection layer from an SE(2)SE(2)-image to a 2D image. The lifting and group convolution layers are SE(2)SE(2) covariant (the output roto-translates with the input). The final projection layer, a maximum intensity projection over rotations, makes the full CNN rotation invariant. We show with three different problems in histopathology, retinal imaging, and electron microscopy that with the proposed group CNNs, state-of-the-art performance can be achieved, without the need for data augmentation by rotation and with increased performance compared to standard CNNs that do rely on augmentation.Comment: 8 pages, 2 figures, 1 table, accepted at MICCAI 201

    Patients with usual vulvar intraepithelial neoplasia-related vulvar cancer have an increased risk of cervical abnormalities

    Get PDF
    Contains fulltext : 81890.pdf (publisher's version ) (Closed access)BACKGROUND: Vulvar squamous cell carcinoma (SCC) originates the following two pathways, related to differentiated (d) vulvar intraepithelial neoplasia (VIN) or to human papillomavirus (HPV)-related usual (u) VIN. Multicentric HPV infections (cervix, vagina and vulva) are common. We hypothesise that patients with a uVIN-related vulvar SCC more often have cervical high-grade squamous intraepithelial lesions (HSILs) compared with women with dVIN-related vulvar SCC. METHODS: All vulvar SCCs (201) were classified to be dVIN- (n=164) or uVIN related (n=37). Data with regard to the smear history and cervical histology were retrieved from PALGA, the nationwide Netherlands database of histo- and cytopathology. For HSIL cervical smears of which histology was taken, HPV DNA analysis on both the vulvar and cervical specimens was performed. RESULTS: At least one smear was available in 145 (72%) of the 201 patients. Patients with a uVIN-related vulvar SCC more often had an HSIL compared with patients with a dVIN-related SCC (35 vs 2%, P<0.001). A total of 10 of the 13 HSILs were histologically assessed and identical HPV types were found in the vulva and cervix. CONCLUSION: These data emphasise the necessity to differentiate between dVIN- and uVIN-related vulvar tumours and to examine the entire lower female ano-genital tract once an uVIN-related lesion is found

    Kidins220/ARMS is an essential modulator of cardiovascular and nervous system development

    Get PDF
    The growth factor family of neurotrophins has major roles both inside and outside the nervous system. Here, we report a detailed histological analysis of key phenotypes generated by the ablation of the Kinase D interacting substrate of 220 kDa/Ankyrin repeat-rich membrane spanning (Kidins220/ARMS) protein, a membrane-anchored scaffold for the neurotrophin receptors Trk and p75NTR. Kidins220 is important for heart development, as shown by the severe defects in the outflow tract and ventricle wall formation displayed by the Kidins220 mutant mice. Kidins220 is also important for peripheral nervous system development, as the loss of Kidins220 in vivo caused extensive apoptosis of DRGs and other sensory ganglia. Moreover, the neuronal-specific deletion of this protein leads to early postnatal death, showing that Kidins220 also has a critical function in the postnatal brain

    Identifying patterns of alumni commitment in key strategic relationship programmes

    Get PDF
    Higher education institutions (HEIs) need to understand their alumni when drawing strategic relationship programmes. This paper aims to identify clusters of alumni based on their commitment relationship and to analyse factors influencing their intention to collaborate with the HEI. The study took place at a Portuguese university, considering a dataset of 1075 of alumni asserting intention to collaborate. First, a cluster analysis was conducted to identify patterns of commitment relationship. Secondly, a logistic regression was run to identify determinants of intention to collaborate. Both techniques revealed the decisive role of HEI commitment in the process. Relationship advantages and positive feelings towards the HEI were also pointed out as important. Alumni asserted recommendations, further training, sharing experiences and giving help as ways to collaborate with HEI. Regression results suggest that sociodemographic variables such as gender, marital status and volunteering are significantly associated with a probability to collaborate. Results also show that affiliation in sororities/fraternities and participation in extracurricular activities are significantly associated with that collaborative intention. The findings provide clues to support strategic relationship programmes based on consistent marketing campaigns, while bringing value to the literature in the European context, where alumni culture requires real insights to evolve.info:eu-repo/semantics/publishedVersio

    Gβγ and the C Terminus of SNAP-25 Are Necessary for Long-Term Depression of Transmitter Release

    Get PDF
    Short-term presynaptic inhibition mediated by G protein-coupled receptors involves a direct interaction between G proteins and the vesicle release machinery. Recent studies implicate the C terminus of the vesicle-associated protein SNAP-25 as a molecular binding target of Gβγ that transiently reduces vesicular release. However, it is not known whether SNAP-25 is a target for molecular modifications expressing long-term changes in transmitter release probability.This study utilized two-photon laser scanning microscopy for real-time imaging of action potential-evoked [Ca(2+)] increases, in single Schaffer collateral presynaptic release sites in in vitro hippocampal slices, plus simultaneous recording of Schaffer collateral-evoked synaptic potentials. We used electroporation to infuse small peptides through CA3 cell bodies into presynaptic Schaffer collateral terminals to selectively study the presynaptic effect of scavenging the G-protein Gβγ. We demonstrate here that the C terminus of SNAP-25 is necessary for expression of LTD, but not long-term potentiation (LTP), of synaptic strength. Using type A botulinum toxin (BoNT/A) to enzymatically cleave the 9 amino acid C-terminus of SNAP-25 eliminated the ability of low frequency synaptic stimulation to induce LTD, but not LTP, even if release probability was restored to pre-BoNT/A levels by elevating extracellular [Ca(2+)]. Presynaptic electroporation infusion of the 14-amino acid C-terminus of SNAP-25 (Ct-SNAP-25), to scavenge Gβγ, reduced both the transient presynaptic inhibition produced by the group II metabotropic glutamate receptor stimulation, and LTD. Furthermore, presynaptic infusion of mSIRK, a second, structurally distinct Gβγ scavenging peptide, also blocked the induction of LTD. While Gβγ binds directly to and inhibit voltage-dependent Ca(2+) channels, imaging of presynaptic [Ca(2+)] with Mg-Green revealed that low-frequency stimulation only transiently reduced presynaptic Ca(2+) influx, an effect not altered by infusion of Ct-SNAP-25.The C-terminus of SNAP-25, which links synaptotagmin I to the SNARE complex, is a binding target for Gβγ necessary for both transient transmitter-mediated presynaptic inhibition, and the induction of presynaptic LTD

    Emergent Functional Properties of Neuronal Networks with Controlled Topology

    Get PDF
    The interplay between anatomical connectivity and dynamics in neural networks plays a key role in the functional properties of the brain and in the associated connectivity changes induced by neural diseases. However, a detailed experimental investigation of this interplay at both cellular and population scales in the living brain is limited by accessibility. Alternatively, to investigate the basic operational principles with morphological, electrophysiological and computational methods, the activity emerging from large in vitro networks of primary neurons organized with imposed topologies can be studied. Here, we validated the use of a new bio-printing approach, which effectively maintains the topology of hippocampal cultures in vitro and investigated, by patch-clamp and MEA electrophysiology, the emerging functional properties of these grid-confined networks. In spite of differences in the organization of physical connectivity, our bio-patterned grid networks retained the key properties of synaptic transmission, short-term plasticity and overall network activity with respect to random networks. Interestingly, the imposed grid topology resulted in a reinforcement of functional connections along orthogonal directions, shorter connectivity links and a greatly increased spiking probability in response to focal stimulation. These results clearly demonstrate that reliable functional studies can nowadays be performed on large neuronal networks in the presence of sustained changes in the physical network connectivity
    corecore