77 research outputs found

    Time in SCCharts

    Get PDF
    Synchronous languages, such as the recently proposed SCCharts language, have been designed for the rigorous specification of real-time systems. Their sound semantics, which builds on an abstraction from physical execution time, make these languages appealing, in particular for safety-critical systems. However, they traditionally lack built-in support for physical time. This makes it rather cumbersome to express things like time-outs or periodic executions within the language. We here propose several mechanisms to reconcile the synchronous paradigm with physical time. Specifically, we propose extensions to the SCCharts language to express clocks and execution periods within the model. We draw on several sources, in particular timed automata, the Clock Constraint Specification Language, and the recently proposed concept of dynamic ticks. We illustrate how these extensions can be mapped to the SCChart language core, with minimal requirements on the run-time system, and we argue that the same concepts could be applied to other synchronous languages such as Esterel, Lustre or SCADE

    The Varicella-Zoster Virus ORF47 Kinase Interferes with Host Innate Immune Response by Inhibiting the Activation of IRF3

    Get PDF
    The innate immune response constitutes the first line of host defence that limits viral spread and plays an important role in the activation of adaptive immune response. Viral components are recognized by specific host pathogen recognition receptors triggering the activation of IRF3. IRF3, along with NF-κB, is a key regulator of IFN-β expression. Until now, the role of IRF3 in the activation of the innate immune response during Varicella-Zoster Virus (VZV) infection has been poorly studied. In this work, we demonstrated for the first time that VZV rapidly induces an atypical phosphorylation of IRF3 that is inhibitory since it prevents subsequent IRF3 homodimerization and induction of target genes. Using a mutant virus unable to express the viral kinase ORF47p, we demonstrated that (i) IRF3 slower-migrating form disappears; (ii) IRF3 is phosphorylated on serine 396 again and recovers the ability to form homodimers; (iii) amounts of IRF3 target genes such as IFN-β and ISG15 mRNA are greater than in cells infected with the wild-type virus; and (iv) IRF3 physically interacts with ORF47p. These data led us to hypothesize that the viral kinase ORF47p is involved in the atypical phosphorylation of IRF3 during VZV infection, which prevents its homodimerization and subsequent induction of target genes such as IFN-β and ISG15

    On Quasi-Analytic Functions

    Get PDF
    Presented at Computing in Aerospace 10, AIAA, San Antonio, TX, March 28-30, 1995.Integrated Product and Process Development (IPPD) embodies the simultaneous application of both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. Agents are used to implement the overall infrastructure on the computer. Successful agent utilization requires that they be made of three components: the resource, the model, and the wrap. Current work is focused on the development of generalized agent schemes and associated demonstration projects. When in place, the technology independent computing infrastructure will aid the designer in systematically generating knowledge used to facilitate decision-making
    • …
    corecore