24 research outputs found
Citizen science in schools: Engaging students in research on urban habitat for pollinators
Citizen science can play an important role in school science education. Citizen science is particularly relevant to addressing current societal environmental sustainability challenges, as it engages the students directly with environmental science and gives students an understanding of the scientific process. In addition, it allows students to observe local representations of global challenges. Here, we report a citizen science programme designed to engage school-age children in real-world scientific research. The programme used standardized methods deployed across multiple schools through scientist–school partnerships to engage students with an important conservation problem: habitat for pollinator insects in urban environments. Citizen science programmes such as the programme presented here can be used to enhance scientific literacy and skills. Provided key challenges to maintain data quality are met, this approach is a powerful way to contribute valuable citizen science data for understudied, but ecologically important study systems, particularly in urban environments across broad geographical areas
Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities
In order to improve the efficacy of conventional radiotherapy, attention has been paid to immune cells, which not only modulate cancer cell response to therapy but are also highly recruited to tumours after irradiation. Particularly, the effect of ionizing radiation on macrophages, using therapeutically relevant doses, is not well understood. To evaluate how radiotherapy affects macrophage behaviour and macrophage-mediated cancer cell activity, human monocyte derived-macrophages were subjected, for a week, to cumulative ionizing radiation doses, as used during cancer treatment (2Gy/fraction/day). Irradiated macrophages remained viable and metabolically active, despite DNA damage. NF-kappaB transcription activation and increased Bcl-xL expression evidenced the promotion of pro-survival activity. A significant increase of pro-inflammatory macrophage markers CD80, CD86 and HLA-DR, but not CCR7, TNF and IL1B was observed after 10Gy cumulative doses, while anti-inflammatory markers CD163, MRC1, VCAN and IL-10 expression decreased, suggesting the modulation towards a more proinflammatory phenotype. Moreover, ionizing radiation induced macrophage morphological alterations and increased their phagocytic rate, without affecting matrix metalloproteases (MMP)2 and MMP9 activity. Importantly, irradiated macrophages promoted cancer cell-invasion and cancer cell-induced angiogenesis. Our work highlights macrophage ability to sustain cancer cell activities as a major concern that needs to be addressed to improve radiotherapy efficacy
Striking Denervation of Neuromuscular Junctions without Lumbar Motoneuron Loss in Geriatric Mouse Muscle
Reasons for the progressive age-related loss of skeletal muscle mass and function, namely sarcopenia, are complex. Few studies describe sarcopenia in mice, although this species is the mammalian model of choice for genetic intervention and development of pharmaceutical interventions for muscle degeneration. One factor, important to sarcopenia-associated neuromuscular change, is myofibre denervation. Here we describe the morphology of the neuromuscular compartment in young (3 month) compared to geriatric (29 month) old female C57Bl/6J mice. There was no significant difference in the size or number of motoneuron cell bodies at the lumbar level (L1–L5) of the spinal cord at 3 and 29 months. However, in geriatric mice, there was a striking increase (by ∼2.5 fold) in the percentage of fully denervated neuromuscular junctions (NMJs) and associated deterioration of Schwann cells in fast extensor digitorum longus (EDL), but not in slow soleus muscles. There were also distinct changes in myofibre composition of lower limb muscles (tibialis anterior (TA) and soleus) with a shift at 29 months to a faster phenotype in fast TA muscle and to a slower phenotype in slow soleus muscle. Overall, we demonstrate complex changes at the NMJ and muscle levels in geriatric mice that occur despite the maintenance of motoneuron cell bodies in the spinal cord. The challenge is to identify which components of the neuromuscular system are primarily responsible for the marked changes within the NMJ and muscle, in order to selectively target future interventions to reduce sarcopenia
Biology of mycorrhizal associations of epacrids (Ericaceae)
Epacrids, a group of southern hemisphere plants formerly considered members of the separate family Epacridaceae, are in fact most closely allied to the Vaccinioid tribe (Ericaceae). Epacrids and other extant ericoid mycorrhiza-forming plants appear to have a monophyletic origin. In common with many Ericaceae they form ericoid mycorrhizas. ITS sequence data indicate that the fungi forming ericoid mycorrhizas with epacrids and other extant Ericaceae are broadly similar, belonging to a poorly defined group of ascomycetes with phylogenetic affinities to Helotiales. The basic development and structure of ericoid mycorrhizal infections in epacrids is similar to other Ericaceae. However, data are limited on the structure and physiology of both hair roots and ericoid mycorrhizas for all Ericaceae. Relatively little is known about the functional significance of ericoid mycorrhizas in epacrids in southern hemisphere habitats that are often poor in organic matter accumulation. However the abilities of fungal endophytes of epacrids to utilize organic N and P substrates equal those of endophytes from northern hemisphere heathland plant hosts. Investigations using ¹⁵N/¹³C-labelled organic N substrates suggest that mycorrhizal endophytes are important, at least, to the N nutrition of their epacrid hosts in some habitats