133 research outputs found

    Bi-harmonic superspace for N=4 d=4 super Yang-Mills

    Full text link
    We develop N=4 d=4 bi-harmonic superspace and use it to derive a novel form for the low-energy effective action in N=4 super Yang-Mills theory. We solve the N=4 supergauge constraints in this superspace in terms of analytic superfields. Using these superfields, we construct a simple functional that respects N=4 supersymmetry and scale invariance. In components, it reproduces all on-shell terms in the four-derivative part of the N=4 SYM effective action; in particular, the F^4/X^4 and Wess-Zumino terms. The latter comes out in a novel SO(3) x SO(3)-invariant form.Comment: 1+19 pages; minor corrections, references adde

    Regulation of early signaling and gene expression in the α-particle and bystander response of IMR-90 human fibroblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The existence of a radiation bystander effect, in which non-irradiated cells respond to signals from irradiated cells, is well established. To understand early signaling and gene regulation in bystander cells, we used a bio-informatics approach, measuring global gene expression at 30 minutes and signaling pathways between 30 minutes and 4 hours after exposure to α-particles in IMR-90 fibroblasts.</p> <p>Methods</p> <p>We used whole human genome microarrays and real time quantitative PCR to measure and validate gene expression. Microarray analysis was done using BRB-Array Tools; pathway and ontology analyses were done using Ingenuity Pathway Analysis and PANTHER, respectively. We studied signaling in irradiated and bystander cells using immunoblotting and semi-quantitative image analysis.</p> <p>Results</p> <p>Gene ontology suggested signal transduction and transcriptional regulation responding 30 minutes after treatment affected cell structure, motility and adhesion, and interleukin synthesis. We measured time-dependent expression of genes controlled by the NF-κB pathway; matrix metalloproteinases 1 and 3; <it/>chemokine ligands 2, 3 and 5 and <it/>interleukins 1β, 6 and 33. There was an increased response of this set of genes 30 minutes after treatment and another wave of induction at 4 hours. We investigated AKT-GSK3β signaling and found both AKT and GSK3β are hyper-phosphorylated 30 minutes after irradiation and this effect is maintained through 4 hours. In bystander cells, a similar response was seen with a delay of 30 minutes. We proposed a network model where the observed decrease in phosphorylation of β-catenin protein after GSK3β dependent inactivation can trigger target gene expression at later times after radiation exposure</p> <p>Conclusions</p> <p>These results are the first to show that the radiation induced bystander signal induces a widespread gene expression response at 30 minutes after treatment and these changes are accompanied by modification of signaling proteins in the PI3K-AKT-GSK3β pathway.</p

    Acrocephalus orinus: A Case of Mistaken Identity

    Get PDF
    Recent discovery of the Large-billed Reed Warbler (Acrocephalus orinus) in museums and in the wild significantly expanded our knowledge of its morphological traits and genetic variability, and revealed new data on geographical distribution of the breeding grounds, migration routes and wintering locations of this species. It is now certain that A. orinus is breeding in Central Asia; however, the precise area of distribution remains unclear. The difficulty in the further study of this species lies in the small number of known specimens, with only 13 currently available in museums, and in the relative uncertainty of the breeding area and habitat of this species. Following morphological and genetic analyses from Svensson, et al, we describe 14 new A. orinus specimens from collections of Zoological Museums of the former USSR from the territory of Central Asian states. All of these specimens were erroneously labeled as Blyth's Reed Warbler (A. dumetorum), which is thought to be a breeding species in these areas. The 14 new A. orinus specimens were collected during breeding season while most of the 85 A. dumetorum specimens from the same area were collected during the migration period. Our data indicate that the Central Asian territory previously attributed as breeding grounds of A. dumetorum is likely to constitute the breeding territory of A. orinus. This rare case of a re-description of the breeding territory of a lost species emphasizes the importance of maintenance of museum collections around the world. If the present data on the breeding grounds of A. orinus are confirmed with field observations and collections, the literature on the biology of A. dumetorum from the southern part of its range may have to be reconsidered

    The Ionizing Radiation-Induced Bystander Effect: Evidence, Mechanism, and Significance

    Get PDF
    It has long been considered that the important biological effects of ionizing radiation are a direct consequence of unrepaired or misrepaired DNA damage occurring in the irradiated cells. It was presumed that no effect would occur in cells in the population that receive no direct radiation exposure. However, in vitro evidence generated over the past two decades has indicated that non-targeted cells in irradiated cell cultures also experience significant biochemical and phenotypic changes that are often similar to those observed in the targeted cells. Further, nontargeted tissues in partial body-irradiated rodents also experienced stressful effects, including oxidative and oncogenic effects. This phenomenon, termed the “bystander response,” has been postulated to impact both the estimation of health risks of exposure to low doses/low fluences of ionizing radiation and the induction of second primary cancers following radiotherapy. Several mechanisms involving secreted soluble factors, oxidative metabolism, gap-junction intercellular communication, and DNA repair, have been proposed to regulate radiation-induced bystander effects. The latter mechanisms are major mediators of the system responses to ionizing radiation exposure, and our knowledge of the biochemical and molecular events involved in these processes is reviewed in this chapter

    The HPV E6 oncoprotein targets histone methyltransferases for modulating specific gene transcription

    Get PDF
    Expression of viral proteins causes important epigenetic changes leading to abnormal cell growth. Whether viral proteins directly target histone methyltransferases (HMTs), a key family enzyme for epigenetic regulation, and modulate their enzymatic activities remains elusive. Here we show that the E6 proteins of both low-risk and high-risk human papillomavirus (HPV) interact with three coactivator HMTs, CARM1, PRMT1 and SET7, and downregulate their enzymatic activities in vitro and in HPV-transformed HeLa cells. Furthermore, these three HMTs are required for E6 to attenuate p53 transactivation function. Mechanistically, E6 hampers CARM1- and PRMT1-catalyzed histone methylation at p53-responsive promoters, and suppresses the binding of p53 to chromatinized DNA independently of E6-mediated p53 degradation. p53 pre-methylated at lysine-372 (p53K372 mono-methylation) by SET7 protects p53 from E6-induced degradation. Consistently, E6 downregulates p53K372 mono-methylation and thus reduces p53 protein stability. As a result of the E6-mediated inhibition of HMT activity, expression of p53 downstream genes is suppressed. Together, our results not only reveal a clever approach for the virus to interfere with p53 function, but also demonstrate the modulation of HMT activity as a novel mechanism of epigenetic regulation by a viral oncoprotein

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas
    corecore