248 research outputs found

    Technical performance and diagnostic utility of the new Elecsys (R) neuron-specific enolase enzyme immunoassay

    Get PDF
    This international multicenter study was designed to evaluate the technical performance of the new double-monoclonal, single-step Elecsys neuron-specific enolase (NSE) enzyme immunoassay (EIA) and to assess its utility as a sensitive and specific test for the diagnosis of small-cell lung cancer (SCLC). Intra and interassay coefficients of variation, determined in five control or serum specimens in six laboratories, ranged from 0.7 to 5.3 (interlaboratory median: 1.3%) and from 1.3 to 8.5 (interlaboratory median: 3.4%), respectively. Laboratory-to-laboratory comparability was excellent with respect to recovery and interassay coefficients of variation. The test was linear between 0.0 and 320 ng/ml (highest measured concentration). There was a significant correlation between NSE concentrations measured using the Elecsys NSE and the established Cobas Core NSE EIA II in all subjects (n=723) and in patients with lung cancer (n=333). However, NSE concentrations were systematically lower (approximately 9%) with the Elecsys NSE than with the comparison test. Based on a specificity of 95% in comparison with the group suffering from benign lung diseases (n=183), the cutoff value for the discrimination between malignant and benign conditions was set at 21.6 ng/ml. NSE was raised in 73.4% of SCLC patients (n=188) and was significantly higher (p<0.01) in extensive (87.8%) as opposed to limited disease (56.7%). NSE was also elevated in 16.0% of the cases with non-small cell lung cancer (NSCLC, n=374). It is concluded that the Elecsys NSE EIA is a reliable and accurate diagnostic procedure for the measurement of NSE in serum samples. The special merits of this new assay are the wide measuring range (according to manufacturers declaration up to 370 ng/ml) and a short incubation time of 18 min

    Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Timely identification of pathogens is crucial to minimize mortality in patients with severe infections. Detection of bacterial and fungal pathogens in blood by nucleic acid amplification promises to yield results faster than blood cultures (BC). We analyzed the clinical impact of a commercially available multiplex PCR system in patients with suspected sepsis.</p> <p>Methods</p> <p>Blood samples from patients with presumed sepsis were cultured with the Bactec 9240™ system (Becton Dickinson, Heidelberg, Germany) and aliquots subjected to analysis with the LightCycler<sup>® </sup>SeptiFast<sup>® </sup>(SF) Test (Roche Diagnostics, Mannheim, Germany) at a tertiary care centre. For samples with PCR-detected pathogens, the actual impact on clinical management was determined by chart review. Furthermore a comparison between the time to a positive blood culture result and the SF result, based on a fictive assumption that it was done either on a once or twice daily basis, was made.</p> <p>Results</p> <p>Of 101 blood samples from 77 patients, 63 (62%) yielded concordant negative results, 14 (13%) concordant positive and 9 (9%) were BC positive only. In 14 (13%) samples pathogens were detected by SF only, resulting in adjustment of antibiotic therapy in 5 patients (7,7% of patients). In 3 samples a treatment adjustment would have been made earlier resulting in a total of 8 adjustments in all 101 samples (8%).</p> <p>Conclusion</p> <p>The addition of multiplex PCR to conventional blood cultures had a relevant impact on clinical management for a subset of patients with presumed sepsis.</p

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package

    Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stair climbing up and down is an essential part of everyday's mobility. To enable wheelchair-dependent patients the repetitive practice of this task, a novel gait robot, G-EO-Systems (EO, Lat: I walk), based on the end-effector principle, has been designed. The trajectories of the foot plates are freely programmable enabling not only the practice of simulated floor walking but also stair climbing up and down. The article intended to compare lower limb muscle activation patterns of hemiparetic subjects during real floor walking and stairs climbing up, and during the corresponding simulated conditions on the machine, and secondly to demonstrate gait improvement on single case after training on the machine.</p> <p>Methods</p> <p>The muscle activation pattern of seven lower limb muscles of six hemiparetic patients during free and simulated walking on the floor and stair climbing was measured via dynamic electromyography. A non-ambulatory, sub-acute stroke patient additionally trained on the G-EO-Systems every workday for five weeks.</p> <p>Results</p> <p>The muscle activation patterns were comparable during the real and simulated conditions, both on the floor and during stair climbing up. Minor differences, concerning the real and simulated floor walking conditions, were a delayed (prolonged) onset (duration) of the thigh muscle activation on the machine across all subjects. Concerning stair climbing conditions, the shank muscle activation was more phasic and timely correct in selected patients on the device. The severely affected subject regained walking and stair climbing ability.</p> <p>Conclusions</p> <p>The G-EO-Systems is an interesting new option in gait rehabilitation after stroke. The lower limb muscle activation patterns were comparable, a training thus feasible, and the positive case report warrants further clinical studies.</p

    Small Molecules with Similar Structures Exhibit Agonist, Neutral Antagonist or Inverse Agonist Activity toward Angiotensin II Type 1 Receptor

    Get PDF
    Small differences in the chemical structures of ligands can be responsible for agonism, neutral antagonism or inverse agonism toward a G-protein-coupled receptor (GPCR). Although each ligand may stabilize the receptor conformation in a different way, little is known about the precise conformational differences. We synthesized the angiotensin II type 1 receptor blocker (ARB) olmesartan, R239470 and R794847, which induced inverse agonism, antagonism and agonism, respectively, and then investigated the ligand-specific changes in the receptor conformation with respect to stabilization around transmembrane (TM)3. The results of substituted cysteine accessibility mapping studies support the novel concept that ligand-induced changes in the conformation of TM3 play a role in stabilizing GPCR. Although the agonist-, neutral antagonist and inverse agonist-binding sites in the AT1 receptor are similar, each ligand induced specific conformational changes in TM3. In addition, all of the experimental data were obtained with functional receptors in a native membrane environment (in situ)

    Single-dose palonosetron for prevention of chemotherapy-induced nausea and vomiting in patients with aggressive non-Hodgkin's lymphoma receiving moderately emetogenic chemotherapy containing steroids: results of a phase II study from the Gruppo Italiano per lo Studio dei Linfomi (GISL)

    Get PDF
    PURPOSE: The control of nausea and vomiting induced by chemotherapy is paramount for overall treatment success in cancer patients. Antiemetic therapy during chemotherapy in lymphoma patients generally consists of anti-serotoninergic drugs and dexamethasone. The aim of this trial was to evaluate the efficacy of a single dose of palonosetron, a second-generation serotonin type 3 (5-HT(3)) receptor antagonist, in patients with aggressive non-Hodgkin's lymphoma receiving moderately emetogenic chemotherapy (MEC) containing steroids. METHODS: Patients received a single intravenous bolus of palonosetron (0.25 mg) before administration of chemotherapy. Complete response (CR) defined as no vomiting and no rescue therapy during overall phase (0-120 h) was the primary endpoint. Complete control (CC) defined as CR and only mild nausea was a secondary endpoint. RESULTS: Eighty-six evaluable patients entered in the study. A CR was observed in 74 patients (86.0%) during the overall phase; the CR during the acute (0-24 h) and delayed (24-120 h) phases was 90.7% and 88.4%, respectively. CC was 89.5% during the acute and 84.9% during the delayed phase; the overall CC was 82.6%. CONCLUSIONS: This was the first trial, which demonstrated the efficacy of a single dose of palonosetron in control CINV in patients with aggressive non-Hodgkin's lymphoma receiving MEC regimen containing steroids

    AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL

    Get PDF
    Chronic myelogenous leukaemia (CML) and Philadelphia chromosome positive (Ph+) acute lymphoblastic leukaemia (ALL) are caused by the BCR-ABL oncogene. Imatinib inhibits the tyrosine kinase activity of the BCR-ABL protein and is an effective, frontline therapy for chronic-phase CML. However, accelerated or blast-crisis phase CML patients and Ph+ ALL patients often relapse due to drug resistance resulting from the emergence of imatinib-resistant point mutations within the BCR-ABL tyrosine kinase domain. This has stimulated the development of new kinase inhibitors that are able to over-ride resistance to imatinib. The novel, selective BCR-ABL inhibitor, AMN107, was designed to fit into the ATP-binding site of the BCR-ABL protein with higher affinity than imatinib. In addition to being more potent than imatinib (IC50<30 nM) against wild-type BCR-ABL, AMN107 is also significantly active against 32/33 imatinib-resistant BCR-ABL mutants. In preclinical studies, AMN107 demonstrated activity in vitro and in vivo against wild-type and imatinib-resistant BCR-ABL-expressing cells. In phase I/II clinical trials, AMN107 has produced haematological and cytogenetic responses in CML patients, who either did not initially respond to imatinib or developed imatinib resistance. Dasatinib (BMS-354825), which inhibits Abl and Src family kinases, is another promising new clinical candidate for CML that has shown good efficacy in CML patients. In this review, the early characterisation and development of AMN107 is discussed, as is the current status of AMN107 in clinical trials for imatinib-resistant CML and Ph+ ALL. Future trends investigating prediction of mechanisms of resistance to AMN107, and how and where AMN107 is expected to fit into the overall picture for treatment of early-phase CML and imatinib-refractory and late-stage disease are discussed

    The role of fishing material culture in communities’ sense of place as an added-value in management of coastal areas

    Get PDF
    Fishing communities in many places around the world are facing significant challenges due to new policies and environmental developments. While it is imperative to ensure sustainability of natural resources, many policies may overlook the contribution of fisheries to the sociocultural well-being of coastal communities. Authors address the problem of valuing the sociocultural benefits of fishing by exploring the role of fishing landscapes and traditional working waterfronts in maintaining sense of place in fishing communities. The paper explores how sense of place contributes to understanding the relationship between fishing and cultural-ecosystem services, drawing on case studies from four U.S. fishing communities in Brunswick County, North Carolina. Through semi-structured and in-depth interviews with fishing communities members, resident photography and sites visits, this paper outlines how fishing contributes to sense of place in terms of placeattachment and cultural-social memory. By understanding the relationship between fishers’ sense of place, and the physical environment in fishing communities in Brunswick County, the authors identify the complexity and interrelated elements that shape the relationship between fishermen and their cultural landscape. The paper suggests that realizing the value of fishing cultural landscape can encourage policies that promote preservation of fishing cultural heritage for the sociocultural benefit of communitie
    • …
    corecore