153 research outputs found
Noise produced by turbulent flow into a rotor: Users manual for noise calculation
A users manual for a computer program for the calculation of noise produced by turbulent flow into a helicopter rotor is presented. These inputs to the program are obtained from the atmospheric turbulence model and mean flow distortion calculation, described in another volume of this set of reports. Descriptions of the various program modules and subroutines, their function, programming structure, and the required input and output variables are included. This routine is incorporated as one module of NASA's ROTONET helicopter noise prediction program
User's manual for the coupled mode version of the normal modes rotor aeroelastic analysis computer program
This User's Manual was prepared to provide the engineer with the information required to run the coupled mode version of the Normal Modes Rotor Aeroelastic Analysis Computer Program. The manual provides a full set of instructions for running the program, including calculation of blade modes, calculations of variable induced velocity distribution and the calculation of the time history of the response for either a single blade or a complete rotor with an airframe (the latter with constant inflow)
Internal Temperature Decline Rate in Beef Primals is Reduced in Heavier Carcasses
The objective of this study was to determine the influence of increasing beef hot carcass weights on internal temperature decline during chilling
Dynamics and Selection of Giant Spirals in Rayleigh-Benard Convection
For Rayleigh-Benard convection of a fluid with Prandtl number \sigma \approx
1, we report experimental and theoretical results on a pattern selection
mechanism for cell-filling, giant, rotating spirals. We show that the pattern
selection in a certain limit can be explained quantitatively by a
phase-diffusion mechanism. This mechanism for pattern selection is very
different from that for spirals in excitable media
Winding number instability in the phase-turbulence regime of the Complex Ginzburg-Landau Equation
We give a statistical characterization of states with nonzero winding number
in the Phase Turbulence (PT) regime of the one-dimensional Complex
Ginzburg-Landau equation. We find that states with winding number larger than a
critical one are unstable, in the sense that they decay to states with smaller
winding number. The transition from Phase to Defect Turbulence is interpreted
as an ergodicity breaking transition which occurs when the range of stable
winding numbers vanishes. Asymptotically stable states which are not
spatio-temporally chaotic are described within the PT regime of nonzero winding
number.Comment: 4 pages,REVTeX, including 4 Figures. Latex (or postscript) version
with figures available at http://formentor.uib.es/~montagne/textos/nupt
Resonances in weak nonleptonic Omega^- decay
We examine the importance of J^P = 1/2^+, 1/2^- resonances for weak
nonleptonic Omega^- decays within the framework of chiral perturbation theory.
The spin-1/2 resonances are included into an effective theory and tree
contributions to the Omega^- decays are calculated. We find significant
contributions to the decay amplitudes and satisfactory agreement with
experiment. This confirms and extends previous results wherein such spin-1/2
resonances were included in nonleptonic and radiative-nonleptonic hyperon
decays.Comment: 12 pages, 2 figure
Mirror matter admixtures and isospin breaking in the \Delta I=1/2 rule in \Omega^- two body non-leptonic decays
We discuss a description of \Omega^- two body non-leptonic decays based on
possible, albeit tiny, admixtures of mirror matter in ordinary hadrons. The
\Delta I=1/2 rule enhancement is obtained as a result of isospin symmetry and,
more importantly, the rather large observed deviations from this rule result
from small isospin breaking. This analysis lends support to the possibility
that the enhancement phenomenon observed in low energy weak interactions may be
systematically described by mirror matter admixtures in ordinary hadrons.Comment: Changed conten
Fate of Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes During Curing and Drying of Beef Bresaola
Manufacturing dry-cured meat products without a thermal lethality step is a growing trend for charcuterie companies in the United States. The United States Department of Agriculture Food Safety and Inspection Service requires that hazards for ready-to-eat meat products be addressed with a scientifically valid Hazard Analysis Critical Control Point system. Because little validation literature exists for these products, an experiment was designed to investigate the safety of beef bresaola. The objective of this study was to determine the reduction of Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes during curing and drying of bresaola.Prior to curing, whole beef semitendinosus muscle was inoculated with a mixed culture containing 3 strains each of E. coli O157:H7, Salmonella spp., and L. monocytogenes, allowed to air dry (30 min at 23°C), sprayed with a 2.5% Beefxide antimicrobial treatment (Birko Corp., Henderson, CO), and allowed to sit overnight in a walk-in cooler (2°C–4°C). Cure (NaNO3and NaNO2) and salt were applied to the beef surface 24 h after the antimicrobial treatment, and the beef was cured for 28 d (2°C–4°C). Following curing, a proprietary spice mixture was surface coated, and each piece was stuffed into beef casings (115–130 mm). The stuffed bresaola pieces were hung and allowed to dry for 35 d to a target water activity < 0.92 (13.63°C ± 2°C; relative humidity 68% ± 7%). Pathogen populations and water activity were analyzed on days 0, 1, and 2 and then weekly until day 65 of the study. Final reductions of 5.97, 5.98, and 5.44 log10 colony-forming units (CFU)/cm2 were achieved on day 65 for E. coli, Salmonella spp., and L. monocytogenes, respectively. During the entire curing and drying process, populations of each species never increased by more than 0.5 log10 CFU/cm2. The critical parameters used to cure and dry this product are sufficient to achieve the minimum 5 log10 CFU/cm2 reduction of each pathogen as required by the United States Department of Agriculture Food Safety and Inspection Service to validate process safety
The dynamics of thin vibrated granular layers
We describe a series of experiments and computer simulations on vibrated
granular media in a geometry chosen to eliminate gravitationally induced
settling. The system consists of a collection of identical spherical particles
on a horizontal plate vibrating vertically, with or without a confining lid.
Previously reported results are reviewed, including the observation of
homogeneous, disordered liquid-like states, an instability to a `collapse' of
motionless spheres on a perfect hexagonal lattice, and a fluctuating,
hexagonally ordered state. In the presence of a confining lid we see a variety
of solid phases at high densities and relatively high vibration amplitudes,
several of which are reported for the first time in this article. The phase
behavior of the system is closely related to that observed in confined
hard-sphere colloidal suspensions in equilibrium, but with modifications due to
the effects of the forcing and dissipation. We also review measurements of
velocity distributions, which range from Maxwellian to strongly non-Maxwellian
depending on the experimental parameter values. We describe measurements of
spatial velocity correlations that show a clear dependence on the mechanism of
energy injection. We also report new measurements of the velocity
autocorrelation function in the granular layer and show that increased
inelasticity leads to enhanced particle self-diffusion.Comment: 11 pages, 7 figure
Stochastic to deterministic crossover of fractal dimension for a Langevin equation
Using algorithms of Higuchi and of Grassberger and Procaccia, we study
numerically how fractal dimensions cross over from finite-dimensional Brownian
noise at short time scales to finite values of deterministic chaos at longer
time scales for data generated from a Langevin equation that has a strange
attractor in the limit of zero noise. Our results suggest that the crossover
occurs at such short time scales that there is little chance of
finite-dimensional Brownian noise being incorrectly identified as deterministic
chaos.Comment: 12 pages including 3 figures, RevTex and epsf. To appear Phys. Rev.
E, April, 199
- …