1,303 research outputs found

    PD-1 signaling promotes control of chronic viral infection by restricting type-I-interferon-mediated tissue damage

    Get PDF
    Immune responses are essential for pathogen elimination but also cause tissue damage, leading to disease or death. However, it is unclear how the host immune system balances control of infection and protection from the collateral tissue damage. Here, we show that PD-1-mediated restriction of immune responses is essential for durable control of chronic LCMV infection in mice. In contrast to responses in the chronic phase, PD-1 blockade in the subacute phase of infection paradoxically results in viral persistence. This effect is associated with damage to lymphoid architecture and subsequently decreases adaptive immune responses. Moreover, this tissue damage is type I interferon dependent, as sequential blockade of the interferon receptor and PD-1 pathways prevents immunopathology and enhances control of infection. We conclude that PD-1-mediated suppression is required as an immunoregulatory mechanism for sustained responses to chronic viral infection by antagonizing type-I interferon-dependent immunopathology

    Radical formation in cytochrome c oxidase

    Get PDF
    AbstractThe formation of radicals in bovine cytochrome c oxidase (bCcO), during the O2 redox chemistry and proton translocation, is an unresolved controversial issue. To determine if radicals are formed in the catalytic reaction of bCcO under single turnover conditions, the reaction of O2 with the enzyme, reduced by either ascorbate or dithionite, was initiated in a custom-built rapid freeze quenching (RFQ) device and the products were trapped at 77K at reaction times ranging from 50μs to 6ms. Additional samples were hand mixed to attain multiple turnover conditions and quenched with a reaction time of minutes. X-band (9GHz) continuous wave electron paramagnetic resonance (CW-EPR) spectra of the reaction products revealed the formation of a narrow radical with both reductants. D-band (130GHz) pulsed EPR spectra allowed for the determination of the g-tensor principal values and revealed that when ascorbate was used as the reductant the dominant radical species was localized on the ascorbyl moiety, and when dithionite was used as the reductant the radical was the SO2− ion. When the contributions from the reductants are subtracted from the spectra, no evidence for a protein-based radical could be found in the reaction of O2 with reduced bCcO. As a surrogate for radicals formed on reaction intermediates, the reaction of hydrogen peroxide (H2O2) with oxidized bCcO was studied at pH 6 and pH 8 by trapping the products at 50μs with the RFQ device to determine the initial reaction events. For comparison, radicals formed after several minutes of incubation were also examined, and X-band and D-band analysis led to the identification of radicals on Tyr-244 and Tyr-129. In the RFQ measurements, a peroxyl (ROO) species was formed, presumably by the reaction between O2 and an amino acid-based radical. It is postulated that Tyr-129 may play a central role as a proton loading site during proton translocation by ejecting a proton upon formation of the radical species and then becoming reprotonated during its reduction via a chain of three water molecules originating from the region of the propionate groups of heme a3. This article is part of a Special Issue entitled: “Allosteric cooperativity in respiratory proteins”

    Complementary Dendritic Cell–activating Function of CD8+ and CD4+ T Cells: Helper Role of CD8+ T Cells in the Development of T Helper Type 1 Responses

    Get PDF
    Dendritic cells (DCs) activated by CD40L-expressing CD4+ T cells act as mediators of “T helper (Th)” signals for CD8+ T lymphocytes, inducing their cytotoxic function and supporting their long-term activity. Here, we show that the optimal activation of DCs, their ability to produce high levels of bioactive interleukin (IL)-12p70 and to induce Th1-type CD4+ T cells, is supported by the complementary DC-activating signals from both CD4+ and CD8+ T cells. Cord blood– or peripheral blood–isolated naive CD8+ T cells do not express CD40L, but, in contrast to naive CD4+ T cells, they are efficient producers of IFN-γ at the earliest stages of the interaction with DCs. Naive CD8+ T cells cooperate with CD40L-expressing naive CD4+ T cells in the induction of IL-12p70 in DCs, promoting the development of primary Th1-type CD4+ T cell responses. Moreover, the recognition of major histocompatibility complex class I–presented epitopes by antigen-specific CD8+ T cells results in the TNF-α– and IFN-γ–dependent increase in the activation level of DCs and in the induction of type-1 polarized mature DCs capable of producing high levels of IL-12p70 upon a subsequent CD40 ligation. The ability of class I–restricted CD8+ T cells to coactivate and polarize DCs may support the induction of Th1-type responses against class I–presented epitopes of intracellular pathogens and contact allergens, and may have therapeutical implications in cancer and chronic infections

    Discrete approaches to quantum gravity in four dimensions

    Get PDF
    The construction of a consistent theory of quantum gravity is a problem in theoretical physics that has so far defied all attempts at resolution. One ansatz to try to obtain a non-trivial quantum theory proceeds via a discretization of space-time and the Einstein action. I review here three major areas of research: gauge-theoretic approaches, both in a path-integral and a Hamiltonian formulation, quantum Regge calculus, and the method of dynamical triangulations, confining attention to work that is strictly four-dimensional, strictly discrete, and strictly quantum in nature.Comment: 33 pages, invited contribution to Living Reviews in Relativity; the author welcomes any comments and suggestion

    2-Chloro-7-methyl-12-phenyldibenzo[b,g][1,8]naphthyridin-11(6H)-one

    Get PDF
    In the title compound, C23H15ClN2O, the fused ring system is planar: the deviation of all the non-H atoms from the plane through all four fused rings is less than 0.31 Å. The plane of the phenyl ring is inclined at 71.78 (5)° to the mean plane of the 1,8-naphthrydine ring system. The crystal structure is devoid of any classical hydrogen bonds but π–π inter­actions are present

    Autoimmune Responses in the Rheumatoid Synovium

    Get PDF
    Rene Toes and Tom Huizinga discuss a new study indicating that lymphoneogenesis in the inflamed synovial tissue of patients with rheumatoid arthritis is fostering potentially pathogenic immune responses

    Optical Investigations on In0.11Ga0.89N based LEDs Grown on Si (111) Substrate with Different Superlattices Stack Layer Structure

    Get PDF
    Growing lnxGa1-xN based LEOs on Si is considered challenging as the large lattice mismatch between nitrides and Si material would lead to cracks and defects in the nitride layers. This reduces the luminescence efficiency of the devices. Therefore, in this work, we investigate the effect of the inserting different intermediate structure as an effort to reduce the defects from propagating into the multi-quantum wells (MQWs). Here, In0.11Ga0.89N based LEOs grown on Si (111) substrate with AIN/GaN SLS. In between the LEOs and the SLS, intermediate layers were grown in different structure and in different devices. The idea is to further minimize the impact of the defects propagation of defects and cracks into the MOWs region. We found the lno_,,Gao.asN based LEDs with the insertion of AIGaN/GaN SLS exhibits the best internal quantum efficiency than other devices
    corecore