30 research outputs found

    Physical activity in Hodgkin's lymphoma survivors with and without chronic fatigue compared with the general population – a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hodgkin's lymphoma survivors (HLSs) commonly report chronic fatigue, defined as high levels of fatigue for 6 months or more. Underlying mechanisms are poorly understood. Based upon knowledge from other populations, lifestyle parameters may be related to this increased and persistent fatigue. The primary objective of the present study was to assess self-reported levels of physical activity, smoking habits and sleep patterns in HLSs with and without chronic fatigue. The secondary objective was to compare these results with data from age and gender adjusted data from the general population (Gen-Pop).</p> <p>Methods</p> <p>The Fatigue Questionnaire (FQ) and questions about daily smoking, sleep patterns and level of physical activity were completed by 476 HLSs treated at Rikshospitalet-Radiumhospitalet Trust (RR). The Gen-Pop data was derived from 56.999 inhabitants in a Norwegian county responding to a mail survey. Fischer's exact test, chi square test and t-tests were used to compare groups. P-values < .05 were considered statistically significant. A logistic regression analysis was performed in comparing the Gen-Pop with the HLSs.</p> <p>Results</p> <p>Level of physical activity, smoking habits and sleep patterns did not differ significantly between HLSs with and without chronic fatigue. The multivariate logistic regression analysis adjusting for different covariates, showed significantly more physically active men among HLSs compared with the Gen-Pop (OR = 1.50, CI 1.04 – 2.17), p = .031. No significant difference was found among females (OR = 1.20, CI = 0.83 – 1.74), p = .33.</p> <p>Conclusion</p> <p>Lifestyle parameters did not seem to be related to increased and persistent fatigue among HLSs. The results may indicate that the experience of Hodgkin's lymphoma increases the level of physical activity among male HLSs.</p

    Demographic and Genetic Patterns of Variation among Populations of Arabidopsis thaliana from Contrasting Native Environments

    Get PDF
    Background: Understanding the relationship between environment and genetics requires the integration of knowledge on the demographic behavior of natural populations. However, the demographic performance and genetic composition of Arabidopsis thaliana populations in the species' native environments remain largely uncharacterized. This information, in combination with the advances on the study of gene function, will improve our understanding on the genetic mechanisms underlying adaptive evolution in A. thaliana. Methodology/Principal Findings: We report the extent of environmental, demographic, and genetic variation among 10 A. thaliana populations from Mediterranean (coastal) and Pyrenean (montane) native environments in northeast Spain. Geographic, climatic, landscape, and soil data were compared. Demographic traits, including the dynamics of the soil seed bank and the attributes of aboveground individuals followed over a complete season, were also analyzed. Genetic data based on genome-wide SNP markers were used to describe genetic diversity, differentiation, and structure. Coastal and montane populations significantly differed in terms of environmental, demographic, and genetic characteristics. Montane populations, at higher altitude and farther from the sea, are exposed to colder winters and prolonged spring moisture compared to coastal populations. Montane populations showed stronger secondary seed dormancy, higher seedling/juvenile mortality in winter, and initiated flowering later than coastal populations. Montane and coastal regions were genetically differentiated, montane populations bearing lower genetic diversity than coastal ones. No significant isolation-by-distance pattern and no shared multilocus genotypes among populations were detected. Conclusions/Significance: Between-region variation in climatic patterns can account for differences in demographic traits, such as secondary seed dormancy, plant mortality, and recruitment, between coastal and montane A. thaliana populations. In addition, differences in plant mortality can partly account for differences in the genetic composition of coastal and montane populations. This study shows how the interplay between variation in environmental, demographic, and genetic parameters may operate in natural A. thaliana populations. © 2009 Montesinos et al
    corecore