173 research outputs found

    ZipA Binds to FtsZ with High Affinity and Enhances the Stability of FtsZ Protofilaments

    Get PDF
    A bacterial membrane protein ZipA that tethers FtsZ to the membrane is known to promote FtsZ assembly. In this study, the binding of ZipA to FtsZ was monitored using fluorescence spectroscopy. ZipA was found to bind to FtsZ with high affinities at three different (6.0, 6.8 and 8.0) pHs, albeit the binding affinity decreased with increasing pH. Further, thick bundles of FtsZ protofilaments were observed in the presence of ZipA under the pH conditions used in this study indicating that ZipA can promote FtsZ assembly and stabilize FtsZ polymers under unfavorable conditions. Bis-ANS, a hydrophobic probe, decreased the interaction of FtsZ and ZipA indicating that the interaction between FtsZ and ZipA is hydrophobic in nature. ZipA prevented the dilution induced disassembly of FtsZ polymers suggesting that it stabilizes FtsZ protofilaments. Fluorescein isothiocyanate-labeled ZipA was found to be uniformly distributed along the length of the FtsZ protofilaments indicating that ZipA stabilizes FtsZ protofilaments by cross-linking them

    PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono-, di- and tetrameric RGD peptides

    Get PDF
    Contains fulltext : 97195.pdf (publisher's version ) (Closed access)PURPOSE: Due to the restricted expression of alpha(v)beta(3) in tumours, alpha(v)beta(3) is considered a suitable receptor for tumour targeting. In this study the alpha(v)beta(3)-binding characteristics of (68)Ga-labelled monomeric, dimeric and tetrameric RGD peptides were determined and compared with their (111)In-labelled counterparts. METHODS: A monomeric (E-c(RGDfK)), a dimeric (E-[c(RGDfK)](2)) and a tetrameric (E{E[c(RGDfK)](2)}(2)) RGD peptide were synthesised, conjugated with DOTA and radiolabelled with (68)Ga. In vitro alpha(v)beta(3)-binding characteristics were determined in a competitive binding assay. In vivo alpha(v)beta(3)-targeting characteristics of the compounds were assessed in mice with subcutaneously growing SK-RC-52 xenografts. In addition, microPET images were acquired using a microPET/CT scanner. RESULTS: The IC(50) values for the Ga(III)-labelled DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)](2) and DOTA-E{E[c(RGDfK)](2)}(2) were 23.9 +/- 1.22, 8.99 +/- 1.20 and 1.74 +/- 1.18 nM, respectively, and were similar to those of the In(III)-labelled mono-, di- and tetrameric RGD peptides (26.6 +/- 1.15, 3.34 +/- 1.16 and 1.80 +/- 1.37 nM, respectively). At 2 h post-injection, tumour uptake of the (68)Ga-labelled mono-, di- and tetrameric RGD peptides (3.30 +/- 0.30, 5.24 +/- 0.27 and 7.11 +/- 0.67%ID/g, respectively) was comparable to that of their (111)In-labelled counterparts (2.70 +/- 0.29, 5.61 +/- 0.85 and 7.32 +/- 2.45%ID/g, respectively). PET scans were in line with the biodistribution data. On all PET scans, the tumour could be clearly visualised. CONCLUSION: The integrin affinity and the tumour uptake followed the order of DOTA-tetramer > DOTA-dimer > DOTA-monomer. The (68)Ga-labelled tetrameric RGD peptide has excellent characteristics for imaging of alpha(v)beta(3) expression with PET

    Does advancing male age influence the expression levels and localisation patterns of phospholipase C zeta (PLCζ) in human sperm?

    Get PDF
    Socio-economic factors have led to an increasing trend for couples to delay parenthood. However, advancing age exerts detrimental effects upon gametes which can have serious consequences upon embryo viability. While such effects are well documented for the oocyte, relatively little is known with regard to the sperm. One fundamental role of sperm is to activate the oocyte at fertilisation, a process initiated by phospholipase C zeta (PLCζ), a sperm-specific protein. While PLCζ deficiency can lead to oocyte activation deficiency and infertility, it is currently unknown whether the expression or function of PLCζ is compromised by advancing male age. Here, we evaluate sperm motility and the proportion of sperm expressing PLCζ in 71 males (22–54 years; 44 fertile controls and 27 infertile patients), along with total levels and localisation patterns of PLCζ within the sperm head. Three different statistical approaches were deployed with male age considered both as a categorical and a continuous factor. While progressive motility was negatively correlated with male age, all three statistical models concurred that no PLCζ–related parameter was associated with male age, suggesting that advancing male age is unlikely to cause problems in terms of the sperm’s fundamental ability to activate an oocyt

    A Screen against Leishmania Intracellular Amastigotes: Comparison to a Promastigote Screen and Identification of a Host Cell-Specific Hit

    Get PDF
    The ability to screen compounds in a high-throughput manner is essential in the process of small molecule drug discovery. Critical to the success of screening strategies is the proper design of the assay, often implying a compromise between ease/speed and a biologically relevant setting. Leishmaniasis is a major neglected disease with limited therapeutic options. In order to streamline efforts for the design of productive drug screens against Leishmania, we compared the efficiency of two screening methods, one targeting the free living and easily cultured promastigote (insect–infective) stage, the other targeting the clinically relevant but more difficult to culture intra-macrophage amastigote (mammal-infective) stage. Screening of a 909-member library of bioactive compounds against Leishmania donovani revealed 59 hits in the promastigote primary screen and 27 in the intracellular amastigote screen, with 26 hits shared by both screens. This suggested that screening against the promastigote stage, although more suitable for automation, fails to identify all active compounds and leads to numerous false positive hits. Of particular interest was the identification of one compound specific to the infective amastigote stage of the parasite. This compound affects intracellular but not axenic parasites, suggesting a host cell-dependent mechanism of action, opening new avenues for anti-leishmanial chemotherapy

    Overexpression of circulating MiR-30b-5p identifies advanced breast cancer

    Get PDF
    Breast cancer (BrC) remains the leading cause of cancer-related death in women, mainly due to recurrent and/or metastatic events, entailing the need for biomarkers predictive of progression to advanced disease. MicroRNAs hold promise as noninvasive cancer biomarkers due to their inherent stability and resilience in tissues and bodily fluids. There is increasing evidence that specific microRNAs play a functional role at different steps of the metastatic cascade, behaving as signaling mediators to enable the colonization of a specific organ. Herein, we aimed to evaluate the biomarker performance of microRNAs previously reported as associated with prognosis for predicting BrC progression in liquid biopsies. Background Breast cancer (BrC) remains the leading cause of cancer-related death in women, mainly due to recurrent and/or metastatic events, entailing the need for biomarkers predictive of progression to advanced disease. MicroRNAs hold promise as noninvasive cancer biomarkers due to their inherent stability and resilience in tissues and bodily fluids. There is increasing evidence that specific microRNAs play a functional role at different steps of the metastatic cascade, behaving as signaling mediators to enable the colonization of a specific organ. Herein, we aimed to evaluate the biomarker performance of microRNAs previously reported as associated with prognosis for predicting BrC progression in liquid biopsies. Methods Selected microRNAs were assessed using a quantitative reverse transcription-polymerase chain reaction in a testing cohort of formalin-fixed paraffin-embedded primary (n = 16) and metastatic BrC tissues (n = 22). Then, miR-30b-5p and miR-200b-3p were assessed in a validation cohort #1 of formalin-fixed paraffin-embedded primary (n = 82) and metastatic BrC tissues (n = 93), whereas only miR-30b-5p was validated on a validation cohort #2 of liquid biopsies from BrC patients with localized (n = 20) and advanced (n = 25) disease. ROC curve was constructed to evaluate prognostic performance. Results MiR-30b-5p was differentially expressed in primary tumors and paired metastatic lesions, with bone metastases displaying significantly higher miR-30b-5p expression levels, paralleling the corresponding primary tumors. Interestingly, patients with advanced disease disclosed increased circulating miR-30b-5p expression compared to patients with localized BrC. Conclusions MiR-30b-5p might identify BrC patients at higher risk of disease progression, thus, providing a useful clinical tool for patients’ monitoring, entailing earlier and more effective treatment. Nonetheless, validation in larger multicentric cohorts is mandatory to confirm these findings.Research Center of Portuguese Oncology Institute of Porto (PI 74-CI-IPOP-19-2016). JL and CSG are supported by a PhD fellowship from FCT - Fundação para a Ciência e Tecnologia (SFRH/ BD/132751/2017 and SFRH/BD/92786/2013, respectively). SS is supported by a PhD fellowship IPO/ESTIMA-1 NORTE-01-0145-FEDER-000027. BMC is funded by FCT-Fundação para a Ciência e a Tecnologia (IF/00601/2012

    Non-essential role for TLR2 and its signaling adaptor Mal/TIRAP in preserving normal lung architecture in mice

    Get PDF
    Myeloid differentiation factor 88 (MyD88) and MyD88-adaptor like (Mal)/Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) play a critical role in transducing signals downstream of the Toll-like receptor (TLR) family. While genetic ablation of the TLR4/MyD88 signaling axis in mice leads to pulmonary cell death and oxidative stress culminating in emphysema, the involvement of Mal, as well as TLR2 which like TLR4 also signals via MyD88 and Mal, in the pathogenesis of emphysema has not been studied. By employing an in vivo genetic approach, we reveal here that unlike the spontaneous pulmonary emphysema which developed in Tlr42/2 mice by 6 months of age, the lungs of Tlr22/2 mice showed no physiological or morphological signs of emphysema. A more detailed comparative analysis of the lungs from these mice confirmed that elevated oxidative protein carbonylation levels and increased numbers of alveolar cell apoptosis were only detected in Tlr42/2 mice, along with up-regulation of NADPH oxidase 3 (Nox3) mRNA expression. With respect to Mal, the architecture of the lungs of Mal2/2 mice was normal. However, despite normal oxidative protein carbonylation levels in the lungs of emphysema-free Mal2/2 mice, these mice displayed increased levels of apoptosis comparable to those observed in emphysematous Tlr42/2 mice. In conclusion, our data provide in vivo evidence for the non-essential role for TLR2, unlike the related TLR4, in maintaining the normal architecture of the lung. In addition, we reveal that Mal differentially facilitates the anti-apoptotic, but not oxidant suppressive, activities of TLR4 in the lung, both of which appear to be essential for TLR4 to prevent the onset of emphysema

    Co-expressed immune and metabolic genes in visceral and subcutaneous adipose tissue from severely obese individuals are associated with plasma HDL and glucose levels: a microarray study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive accumulation of body fat, in particular in the visceral fat depot, is a major risk factor to develop a variety of diseases such as type 2 diabetes. The mechanisms underlying the increased risk of obese individuals to develop co-morbid diseases are largely unclear.</p> <p>We aimed to identify genes expressed in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) that are related to blood parameters involved in obesity co-morbidity, such as plasma lipid and glucose levels, and to compare gene expression between the fat depots.</p> <p>Methods</p> <p>Whole-transcriptome SAT and VAT gene expression levels were determined in 75 individuals with a BMI >35 kg/m<sup>2</sup>. Modules of co-expressed genes likely to be functionally related were identified and correlated with BMI, plasma levels of glucose, insulin, HbA<sub>1c</sub>, triglycerides, non-esterified fatty acids, ALAT, ASAT, C-reactive protein, and LDL- and HDL cholesterol.</p> <p>Results</p> <p>Of the approximately 70 modules identified in SAT and VAT, three SAT modules were inversely associated with plasma HDL-cholesterol levels, and a fourth module was inversely associated with both plasma glucose and plasma triglyceride levels (p < 5.33 × 10<sup>-5</sup>). These modules were markedly enriched in immune and metabolic genes. In VAT, one module was associated with both BMI and insulin, and another with plasma glucose (p < 4.64 × 10<sup>-5</sup>). This module was also enriched in inflammatory genes and showed a marked overlap in gene content with the SAT modules related to HDL. Several genes differentially expressed in SAT and VAT were identified.</p> <p>Conclusions</p> <p>In obese subjects, groups of co-expressed genes were identified that correlated with lipid and glucose metabolism parameters; they were enriched with immune genes. A number of genes were identified of which the expression in SAT correlated with plasma HDL cholesterol, while their expression in VAT correlated with plasma glucose. This underlines both the singular importance of these genes for lipid and glucose metabolism and the specific roles of these two fat depots in this respect.</p

    Lysogeny with Shiga Toxin 2-Encoding Bacteriophages Represses Type III Secretion in Enterohemorrhagic Escherichia coli

    Get PDF
    Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins

    ADEPT - Abnormal Doppler Enteral Prescription Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pregnancies complicated by abnormal umbilical artery Doppler blood flow patterns often result in the baby being born both preterm and growth-restricted. These babies are at high risk of milk intolerance and necrotising enterocolitis, as well as post-natal growth failure, and there is no clinical consensus about how best to feed them. Policies of both early milk feeding and late milk feeding are widely used. This randomised controlled trial aims to determine whether a policy of early initiation of milk feeds is beneficial compared with late initiation. Optimising neonatal feeding for this group of babies may have long-term health implications and if either of these policies is shown to be beneficial it can be immediately adopted into clinical practice.</p> <p>Methods and Design</p> <p>Babies with gestational age below 35 weeks, and with birth weight below 10th centile for gestational age, will be randomly allocated to an "early" or "late" enteral feeding regimen, commencing milk feeds on day 2 and day 6 after birth, respectively. Feeds will be gradually increased over 9-13 days (depending on gestational age) using a schedule derived from those used in hospitals in the Eastern and South Western Regions of England, based on surveys of feeding practice. Primary outcome measures are time to establish full enteral feeding and necrotising enterocolitis; secondary outcomes include sepsis and growth. The target sample size is 400 babies. This sample size is large enough to detect a clinically meaningful difference of 3 days in time to establish full enteral feeds between the two feeding policies, with 90% power and a 5% 2-sided significance level. Initial recruitment period was 24 months, subsequently extended to 38 months.</p> <p>Discussion</p> <p>There is limited evidence from randomised controlled trials on which to base decisions regarding feeding policy in high risk preterm infants. This multicentre trial will help to guide clinical practice and may also provide pointers for future research.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN: 87351483</p

    Human Integrin α3β1 Regulates TLR2 Recognition of Lipopeptides from Endosomal Compartments

    Get PDF
    Toll-like receptor (TLR)-2/TLR1 heterodimers recognize bacterial lipopeptides and initiate the production of inflammatory mediators. Adaptors and co-receptors that mediate this process, as well as the mechanisms by which these adaptors and co-receptors function, are still being discovered.Using shRNA, blocking antibodies, and fluorescent microscopy, we show that U937 macrophage responses to the TLR2/1 ligand, Pam(3)CSK(4), are dependent upon an integrin, α(3)β(1). The mechanism for integrin α(3)β(1) involvement in TLR2/1 signaling is through its role in endocytosis of lipopeptides. Using inhibitors of endosomal acidification/maturation and physical tethering of the ligand, we show that the endocytosis of Pam(3)CSK(4) is necessary for the complete TLR2/1-mediated pro-inflammatory cytokine response. We also show that TLR2/1 signaling from the endosome results in the induction of different inflammatory mediators than TLR2/1 signaling from the plasma membrane.Here we identify integrin α(3)β(1) as a novel regulator for the recognition of bacterial lipopeptides. We demonstrate that induction of a specific subset of cytokines is dependent upon integrin α(3)β(1)-mediated endocytosis of the ligand. In addition, we address an ongoing controversy regarding endosomal recognition of bacterial lipopeptides by demonstrating that TLR2/1 signals from within endosomal compartments as well as the plasma membrane, and that downstream responses may differ depending upon receptor localization. We propose that the regulation of endosomal TLR2/1 signaling by integrin α(3)β(1) serves as a mechanism for modulating inflammatory responses
    corecore