30 research outputs found

    Misaligned spin and orbital axes cause the anomalous precession of DI Herculis

    Full text link
    The orbits of binary stars precess as a result of general relativistic effects, forces arising from the asphericity of the stars, and forces from additional stars or planets in the system. For most binaries, the theoretical and observed precession rates are in agreement. One system, however -- DI Herculis -- has resisted explanation for 30 years. The observed precession rate is a factor of four slower than the theoretical rate, a disagreement that once was interpreted as evidence for a failure of general relativity. Among the contemporary explanations are the existence of a circumbinary planet and a large tilt of the stellar spin axes with respect to the orbit. Here we report that both stars of DI Herculis rotate with their spin axes nearly perpendicular to the orbital axis (contrary to the usual assumption for close binary stars). The rotationally induced stellar oblateness causes precession in the direction opposite to that of relativistic precession, thereby reconciling the theoretical and observed rates.Comment: Nature, in press [11 pg

    In the Shadow of the Transiting Disk: Imaging epsilon Aurigae in Eclipse

    Full text link
    Eclipses of the single-line spectroscopic binary star, epsilon Aurigae, provide an opportunity to study the poorly-defined companion. We used the MIRC beam combiner on the CHARA array to create interferometric images during eclipse ingress. Our results demonstrate that the eclipsing body is a dark disk that is opaque and tilted, and therefore exclude alternative models for the system. These data constrain the geometry and masses of the components, providing evidence that the F-star is not a massive supergiant star.Comment: As submitted to Nature. Published in Nature April 8, 2010

    An eclipsing binary distance to the Large Magellanic Cloud accurate to 2 per cent

    Full text link
    In the era of precision cosmology it is essential to determine the Hubble Constant with an accuracy of 3% or better. Currently, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC) which as the second nearest galaxy serves as the best anchor point of the cosmic distance scale. Observations of eclipsing binaries offer a unique opportunity to precisely and accurately measure stellar parameters and distances. The eclipsing binary method was previously applied to the LMC but the accuracy of the distance results was hampered by the need to model the bright, early-type systems used in these studies. Here, we present distance determinations to eight long-period, late- type eclipsing systems in the LMC composed of cool giant stars. For such systems we can accurately measure both the linear and angular sizes of their components and avoid the most important problems related to the hot early-type systems. Our LMC distance derived from these systems is demonstrably accurate to 2.2 % (49.97 +/- 0.19 (statistical) +/- 1.11 (systematic) kpc) providing a firm base for a 3 % determination of the Hubble Constant, with prospects for improvement to 2 % in the future.Comment: 34 pages, 5 figures, 13 tables, published in the Nature, a part of our data comes from new unpublished OGLE-IV photometric dat

    Stellar Coronal and Wind Models: Impact on Exoplanets

    Full text link
    Surface magnetism is believed to be the main driver of coronal heating and stellar wind acceleration. Coronae are believed to be formed by plasma confined in closed magnetic coronal loops of the stars, with winds mainly originating in open magnetic field line regions. In this Chapter, we review some basic properties of stellar coronae and winds and present some existing models. In the last part of this Chapter, we discuss the effects of coronal winds on exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief: Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer Reference Work

    Evidence for the Roche Lobe Overflow in VV Cephei

    No full text

    An Updated 2017 Astrometric Solution for Betelgeuse

    No full text
    We provide an update for the astrometric solution for the Type II supernova progenitor Betelgeuse using the revised Hipparcos Intermediate Astrometric Data (HIAD) of van Leeuwen, combined with existing VLA and new e-MERLIN and ALMA positions. The 2007 Hipparcos refined abscissa measurements required the addition of so-called Cosmic Noise of 2.4 mas to find an acceptable 5-parameter stochastic solution. We find that a measure of radio Cosmic Noise should also be included for the radio positions because surface inhomogeneities exist at a level significant enough to introduce additional intensity centroid uncertainty. Combining the 2007 HIAD with the proper motions based solely on the radio positions leads to a parallax of π =5.27+/- 0.78 mas ({190}-25+33 pc), smaller than the Hipparcos 2007 value of 6.56 ± 0.83 mas ({152}-17+22 pc). Furthermore, combining the VLA and new e-MERLIN and ALMA radio positions with the 2007 HIAD, and including radio Cosmic Noise of 2.4 mas, leads to a nominal parallax solution of 4.51 ± 0.80 mas ({222}-34+48 pc), which, while only 0.7σ different from the 2008 solution of Harper et al., is 2.6σ different from the solution of van Leeuwen. An accurate and precise parallax for Betelgeuse is always going to be difficult to obtain because it is small compared to the stellar angular diameter (θ =44 mas). We outline an observing strategy utilizing future mm and sub-mm high-spatial resolution interferometry that must be used if substantial improvements in the precision and accuracy of the parallax and distance are to be achieved.status: publishe
    corecore