32 research outputs found
Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability
Naturally-occurring single α-helices (SAHs), are rich in Arg (R), Glu (E) and Lys (K) residues, and stabilized by multiple salt bridges. Understanding how salt bridges promote their stability is challenging as SAHs are long and their sequences highly variable. Thus, we designed and tested simple de novo 98-residue polypeptides containing 7-residue repeats (AEEEXXX, where X is K or R) expected to promote salt-bridge formation between Glu and Lys/Arg. Lys-rich sequences (EK3 (AEEEKKK) and EK2R1 (AEEEKRK)) both form SAHs, of which EK2R1 is more helical and thermo-stable suggesting Arg increases stability. Substituting Lys with Arg (or vice versa) in the naturally-occurring myosin-6 SAH similarly increased (or decreased) its stability. However, Arg-rich de novo sequences (ER3 (AEEERRR) and EK1R2 (AEEEKRR)) aggregated. Combining a PDB analysis with molecular modelling provides a rational explanation, demonstrating that Glu and Arg form salt bridges more commonly, utilize a wider range of rotamer conformations, and are more dynamic than Glu–Lys. This promiscuous nature of Arg helps explain the increased propensity of de novo Arg-rich SAHs to aggregate. Importantly, the specific K:R ratio is likely to be important in determining helical stability in de-novo and naturally-occurring polypeptides, giving new insight into how single α-helices are stabilized
Tumor growth suppression induced by biomimetic silk fibroin hydrogels
Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of
cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic
shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on
how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus,
this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo
intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the
SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random
coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo
subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel
promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis
in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro
and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and
tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for
cancer research and uses of biomaterials.The authors would like to thank the Portuguese Foundation for Science and Technology (FCT) project grants OsteoCart (PTDC/CTM-BPC/115977/2009) and Tissue2Tissue (PTDC/CTM/105703/2008) which supported this study. Research leading to these results has also received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS. Le-Ping Yan was awarded a PhD scholarship from FCT (SFRH/BD/64717/2009). We also would like to thank FCT for the distinction attributed to J.M. Oliveira under the Investigador FCT program (IF/00423/2012). The authors also like to acknowledge Dr. Mariana B. Oliveira for technical assistance on the dynamic mechanical analysis of the cell-laden hydrogels
MagicWand: A single, designed peptide that assembles to stable, ordered alpha-helical fibers
We describe a straightforward single-peptide design that self-assembles into extended and thickened nano-to-mesoscale fibers of remarkable stability and order. The basic chassis of the design is the well-understood dimeric a-helical coiled-coil motif. As such, the peptide has a heptad sequence repeat, abcdefg, with isoleucine and leucine residues at the a and d sites to ensure dimerization. In addition, to direct staggered assembly of peptides and to foster fibrillogenesis-that is, as opposed to blunt-ended discrete species-the terminal quarters of the peptide are cationic and the central half anionic with lysine and glutamate, respectively, at core-flanking e and g positions. This +,-,-,+ arrangement gives the peptide its name, MagicWand (MW). As judged by circular dichroism (CD) spectra, MW assembles to alpha-helical structures in the sub-micromolar range and above. The thermal unfolding of MW is reversible with a melting temperature > 70 degrees C at 100 mu M peptide concentration. Negative-stain transmission electron microscopy (TEM) of MW assemblies reveals stiff, straight, fibrous rods that extended for tens of microns. Moreover, different stains highlight considerable order both perpendicular and parallel to the fiber long axis. The dimensions of these features are consistent with bundles of long, straight coiled alpha-helical coiled coils with their axes aligned parallel to the long axis of the fibers. The fiber thickening indicates intercoiled-coil interactions. Mutagenesis of the outer surface of the peptide-i.e., at the b and f positions-combined with stability and microscopy measurements, highlights the role of electrostatic and cation-pi interactions in driving fiber formation, stability and thickening. These findings are discussed in the context of the growing number of self-assembling peptide-based fibrous systems
Biogelx: cell culture on self-assembling peptide gels
Aromatic peptide amphiphiles can form self-supporting nanostructured hydrogels with tunable mechanical properties and chemical compositions. These hydrogels are increasingly applied in two-dimensional (2D) and three-dimensional (3D) cell culture, where there is a rapidly growing need to store, grow, proliferate, and manipulate naturally derived cells within a hydrated, 3D matrix. Biogelx Limited is a biomaterials company, created to commercialize these bio-inspired hydrogels to cell biologists for a range of cell culture applications. This chapter describes methods of various characterization and cell culture techniques specifically optimized for compatibility with Biogelx products
Type-2 airway inflammation in mild asthma patients with high blood eosinophils and high fractional exhaled nitric oxide.
Abstract Type‐2 (T2) inflammation is a characteristic feature of asthma. Biological therapies have been developed to target T2‐inflammation in asthma. IL‐13 is a key component of T2‐inflammation in asthma, driving mucus hypersecretion, IgE‐induction, and smooth muscle contraction. Early phase clinical trials for treatments that target T2‐inflammation require biomarkers to assess pharmacological effects. The aim of this study was to examine levels of IL‐13 inducible biomarkers in the airway epithelium of patients with mild asthma compared to healthy controls. Ten patients with mild asthma with high blood eosinophil and high fractional exhaled nitric oxide (FeNO) were recruited, and six healthy subjects. Blood eosinophil and FeNO reproducibility was assessed prior to bronchoscopy. Epithelial brushings were collected and assessed for IL‐13 inducible gene expression. Blood eosinophil and FeNO levels remained consistent in both patients with asthma and healthy subjects. Of the 11 genes assessed, expression levels of 15LOX1, POSTN, CLCA1, SERPINB2, CCL26, and NOS2 were significantly higher in patients with asthma compared to healthy controls. These six genes, present in patients with mild asthma with T2 inflammation, have the potential to be used in translational early phase asthma clinical trials of novel therapies as bronchial epithelial biomarkers