11 research outputs found

    Sequential analysis of global gene expression profiles in immature and in vitro matured bovine oocytes: potential molecular markers of oocyte maturation

    Get PDF
    Abstract Background Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production (IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences. Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an artifact of the techniques used during analysis. Results 8489 transcripts were detected across the two oocyte groups, of which ~25.0% (2117 transcripts) were differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is particularly interesting, therefore, a variety of approaches were employed to determine whether the observed transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the analysis of transcript abundance in oocytes in vitro matured in the presence of α-amanitin. Subsets of the differentially expressed genes were also validated by quantitative real-time PCR (qPCR) and the gene expression data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured counterparts, while ANXA1, PLAU, STC1and LUM were among the over-expressed genes after oocyte maturation. Conclusion Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte maturation. This dataset provides a unique reference resource for studies concerned with the molecular mechanisms controlling oocyte meiotic maturation in cattle, addresses the existing conflicting issue of transcription during meiotic maturation and contributes to the global goal of improving assisted reproductive technology

    Follicle environment and quality of in vitro matured oocytes

    No full text
    In mammalian reproduction, the oocyte depends on the ovarian follicle for most of its growth. They form a bipolar partnership and the status of one will impact the functioning of the other. When oocytes are removed from their follicle by ovulation, they have normally completed all the steps required to begin their journey into the oviduct and drive the early embryonic development. When oocytes are removed from their follicle before natural ovulation, the process by which they acquire all the important components for their journey might not be completed and their ability to mature, fertilize or develop into embryos or to term might be compromised. Animal models have been useful to define the important steps required for the oocyte’s growth phase, and in the mouse, when the oocyte has reached its full size, the program is ready. This is not the case in larger mammals where the completion of growth does not ensure that the oocyte is fully capable of undergoing all the steps to the embryo and to term. The final steps of oocyte preparation also involve a progressive condensation of the chromatin that may facilitate normal maturation but may also indirectly reduce the lifespan of the oocyte. In such a scenario, the oocyte would have an expiration date when fully competent. In humans, a number of indications may justify the aspiration of oocytes from unstimulated patients and the development of an in vitro maturation (IVM) process that would allow fertilization and subsequent development. This objective could be realized by a better understanding of the essential follicular contribution required before removing the oocyte. Therefore, this review will focus on the large animal models where IVM has been used and studied for more than 25 years. The status of the follicle at the time of oocyte recovery and the status of the oocyte’s chromatin will be described in detail as they have a significant impact on the outcome

    Effects of Different Maturation Systems on Bovine Oocyte Quality, Plasma Membrane Phospholipid Composition and Resistance to Vitrification and Warming

    Get PDF
    The objective of this study was to evaluate the effects of different maturation systems on oocyte resistance after vitrification and on the phospholipid profile of the oocyte plasma membrane (PM). Four different maturation systems were tested: 1) in vitro maturation using immature oocytes aspirated from slaughterhouse ovaries (CONT; n = 136); 2) in vitro maturation using immature oocytes obtained by ovum pick-up (OPU) from unstimulated heifers (IMA; n = 433); 3) in vitro maturation using immature oocytes obtained by OPU from stimulated heifers (FSH; n = 444); and 4) in vivo maturation using oocytes obtained from heifers stimulated 24 hours prior by an injection of GnRH (MII; n = 658). A sample of matured oocytes from each fresh group was analyzed by matrix associated laser desorption-ionization (MALDI-TOF) to determine their PM composition. Then, half of the matured oocytes from each group were vitrified/warmed (CONT VIT, IMA VIT, FSH VIT and MII VIT), while the other half were used as fresh controls. Afterwards, the eight groups underwent IVF and IVC, and blastocyst development was assessed at D2, D7 and D8. A chi-square test was used to compare embryo development between the groups. Corresponding phospholipid ion intensity was expressed in arbitrary units, and following principal components analyses (PCA) the data were distributed on a 3D graph. Oocytes obtained from superstimulated animals showed a greater rate of developmental (P0.05) for all groups (CONT VIT = 2.8±3.5%, IMA VIT = 2.9±4.0%, FSH VIT = 4.3±7.2% and MII VIT = 3.6±7.2%). MALDI-TOF revealed that oocytes from all maturation groups had similar phospholipid contents, except for 760.6 ([PC (34:1) + H]+), which was more highly expressed in MII compared to FSH (P<0.05). The results suggest that although maturation systems improve embryonic development, they do not change the PM composition nor the resistance of bovine oocytes to vitrification

    Isolating biomarkers for symptomatic states: considering symptom–substrate chronometry

    No full text
    corecore