101 research outputs found

    Role of hydrology in development of a vernal clear water phase in an urban impoundment

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72334/1/j.1365-2427.2007.01808.x.pd

    Increased Habitat Connectivity Homogenizes Freshwater Communities: Historical and Landscape Perspectives

    Get PDF
    Increases in habitat connectivity can have consequences for taxonomic, functional, and genetic diversity of communities. Previously isolated aquatic habitats were connected with canals and pipelines in the largest water development project in the US history, the Columbia Basin Project (CBP; eastern Washington, USA), which also altered environmental conditions; however, the ecological consequences are largely unknown. Using a historical dataset, we examined long-term patterns in zooplankton communities, water chemistry and clarity, testing the hypothesis that increased connectivity will result in taxonomic homogenization. Further, we tested contemporary drivers of communities using a comprehensive set of environmental and landscape variables. Waterbodies were sampled for zooplankton community composition as well as physical and chemical variables inside and outside the CBP using methods consistent with historical studies. We found significant declines in salinity inside the CBP, whereas changes in water clarity were prevalent across all waterbodies. Increased connectivity via canals homogenized zooplankton communities over time, as well as increasing regional richness. Other long-term changes in zooplankton communities may be related to climate change, invasive species, and land-use changes. Synthesis and applications. Though canals may offer species spatial refugia, homogenization may decrease resilience to environmental stressors. These new hybrid aquatic landscapes, or hydroscapes, should be considered carefully in future water development, including specific plans for monitoring of species and environmental conditions, as well as mitigation of undesirable conditions and/or non-native species

    Cladoceran birth and death rates estimates

    Get PDF
    I. Birth and death rates of natural cladoceran populations cannot be measured directly. Estimates of these population parameters must be calculated using methods that make assumptions about the form of population growth. These methods generally assume that the population has a stable age distribution. 2. To assess the effect of variable age distributions, we tested six egg ratio methods for estimating birth and death rates with data from thirty-seven laboratory populations of Daphnia pulicaria. The populations were grown under constant conditions, but the initial age distributions and egg ratios of the populations varied. Actual death rates were virtually zero, so the difference between the estimated and actual death rates measured the error in both birth and death rate estimates. 3. The results demonstrate that unstable population structures may produce large errors in the birth and death rates estimated by any of these methods. Among the methods tested, Taylor and Slatkin's formula and Paloheimo's formula were most reliable for the experimental data. 4. Further analyses of three of the methods were made using computer simulations of growth of age-structured populations with initially unstable age distributions. These analyses show that the time interval between sampling strongly influences the reliability of birth and death rate estimates. At a sampling interval of 2.5 days (equal to the duration of the egg stage), Paloheimo's formula was most accurate. At longer intervals (7.5–10 days), Taylor and Slatkin's formula which includes information on population structure was most accurate

    Freshwater Biology

    No full text
    861 hal,;ill,;21 c
    • …
    corecore