156 research outputs found

    Development and Demographic Change in Nang Rong, Thailand

    Get PDF
    This research explores the relationship between the social and economic changes associated with the development process and demographic change in Nang Rong, a relatively poor district in Thailand's Northeast province. I focus on the ways in which the development process encourages changes in fertility and migration behavior, and how these two demographic processes are related to each other. By exploring this relationship in a context of rapid social, economic, and demographic change, and by focusing on a much finer level of analysis than is typical (individual, household, and community), this research provides a number of insights into the relationship between development and demographic behavior that may be applied in other situations of rapid change. This dissertation is organized around three related studies. The first examines how the development process influences fertility and migration behavior, drawing on a modified version of the Multiphasic Response Theory to guide the analyses. I use a parallel modeling strategy using logistic regression techniques to explore both how fertility and migration behavior are responsive to development, and how these are related. The results lend support to the validity of the theoretical model, and suggest it may be successfully applied in other settings. The second study focuses on the ways in which fertility behavior is influenced by migration status and lifetime experience with urban residence, focusing on both how this differs for short- and long-term migrants and for individuals at different stages of family formation. I use event history analysis to explore this issue, and specifically examine the role of migrant selectivity and the potential endogeneity of migration and fertility in shaping this relationship. The results suggest that the effect of migration in this setting is contingent on family formation stage, and is closely tied to marriage. The final study examines how the contraceptive behavior of women in Nang Rong is influenced by both past and present context, focusing on the role of community contraceptive use. The results indicate that behavior is influenced primarily by current context, but that past context continues to exert an influence on behavior through 'setting the stage' for current context

    Review of Maleic–itaconic acid copolymer purported as urease inhibitor and phosphorus enhancer in soils

    Get PDF
    The fertilizer additive products Nutrisphere and Avail use a coating of maleic–itaconic acid copolymer and have been marketed worldwide. It is claimed that the copolymer (trade name: Nutrisphere) enhances the efficiency of urea-N use by inhibiting urea hydrolysis and reducing ammonia (NH3) volatilization from urea. It is also claimed that the same copolymer (trade name: Avail) prevents or reduces the conversion of soluble P fertilizer to less soluble forms in the soil and thus enhances the efficiency of fertilizer P. Consequently, it is claimed that both additive products can increase crop yields by 10 to 15%. This review critically examines these claims by considering the basic polymer and soil chemistry, and agronomic effectiveness of these products in the field. It is found that the copolymer does not retard urea hydrolysis and the subsequent NH3 volatilization. Theoretical calculations found that the amount of copolymer recommended for commercial use (0.25% of P fertilizers) is too small to have any significant effect on soil P chemistry. These results are consistent with evidence derived from field trials, which show that these products have very little practical effect on crop production. Accordingly, it is recommended that these products not be promoted to farmers as a means to either increase efficiency of fertilizer urea-N and fertilizer P or to enhance crop productio

    Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers

    Get PDF
    Molecular-marker loci were used to investigate the adaptation differences between highland and lowland tropical maize. An F2 population from the cross of two inbred lines independently derived from highland and lowland maize germplasm was developed, and extracted F3:4 lines were phenotype in replicated field trials at four thermally diverse tropical testing sites, ranging from lowland to extreme highland (mean growing season temperature range 13.2–24.6°C). Traits closely related with adaptation, such as biomass and grain yield, yield components, days from sowing to male and female flowering, total leaf number, plant height and number of primary tassel branches (TBN), were analyzed. A large line ´ environment interaction was observed for most traits. The genetic basis of this interaction was reflected by significant, but systematic, changes from lowland to highland sites in the correlation between the trait value and genomic composition (designated by the proportion of marker alleles with the same origin). Joint analysis of quantitative trait loci (QTLs) over sites detected 5–8 QTLs for each trait (except disease scores, with data only from one site). With the exception of one QTL for TBN, none of these accounted for more than 15% of the total phenotypic variation. In total, detected QTLs accounted for 24–61% of the variation at each site on average. For yield, yield components and disease scores, alleles generally favored the site of origin. Highland-derived alleles had little effect at lowland sites, while lowland- derived alleles showed relatively broader adaptation. Gradual changes in the estimated QTL effects with increasing mean site temperature were observed, and paralleled the observed patterns of adaptation in high land and lowland germplasm. Several clusters of QTLs for different traits reflected the relative importance in the adaptation differences between the two germplasm types, and pleiotropy is suggested as the main cause for the clustering. Breeding for broad thermal adaptation should be possible by pooling genes showing adaptation to specific thermal regimes, though perhaps at the expense of reduced progress for adaptation to a specific site. Molecular marker-assisted selection would be an ideal tool for this task, since it could greatly reduce the linkage drag caused by the unintentional transfer of undesirable trait

    Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables

    Get PDF
    An understanding of the genetic and environmental basis of genotype´environment interaction (GEI) is of fundamental importance in plant breeding. In mapping quantitative trait loci (QTLs), suitable genetic populations are grown in different environments causing QTLs´environment interaction (QEI). The main objective of the present study is to show how Partial Least Squares (PLS) regression and Factorial Regression (FR) models using genetic markers and environmental covariables can be used for studying QEI related to GEI. Biomass data were analyzed from a multi-environment trial consisting of 161 lines from a F3:4 maize segregating population originally created with the purpose of mapping QTLs loci and investigating adaptation differences between highland and lowland tropical maize. PLS and FR methods detected 30 genetic markers (out of 86) that explained a sizeable proportion of the interaction of maize lines over four contrasting environments involving two low-altitude sites, one intermediate-altitude site, and one high-altitude site for biomass production. Based on a previous study, most of the 30 markers were associated with QTLs for biomass and exhibited significant QEI. It was found that marker loci in lines with positive GEI for the highland environments contained more highland alleles, whereas marker loci in lines with positive GEI for intermediate and lowland environments contained more lowland alleles. In addition, PLS and FR models identified maximum temperature as the most-important environmental covariable for GEI. Using a stepwise variable selection procedure, a FR model was constructed for GEI and QEI that exclusively included cross products between genetic markers and environmental covariables. Higher maximum temperature in low- and intermediatealtitude sites affected the expression of some QTLs, while minimum temperature affected the expression of other QTLs

    Crop Updates - 2009 Katanning

    Get PDF
    This session covers seventeen papers from different authors GM canola – How will it affect the way I farm? Murray Scholz, 2008 Nuffield scholar, Southern NSW Eight years of IWM smashes tyegrass seed banks by 98% over 31 focus paddocks, Peter Newman, Glenn Adam & Trevor Bell, Department of Agriculture and Food The global economic climate and impacts on agriculture, profile on Michael Whitehead Rabobank New York Lessons from five years of cropping systems research, W.K. Anderson, Department of Agriculture and Food Case study of a 17year old agricultural lime trial, C. Gazey, Department of Agriculture and Food, J. Andrew, Precision SoilTech and R. Pearce, ConsultAg Fertilising in a changing price environment, Bill Bowden, Wayne Pluske and Jeremy Lemon, Department of Agriculture and Food Fact or Fiction: Who is telling the truth and how to tell the difference? D.C. Edmeades, agKnowledge Ltd, Hamilton Forecast disease resistance profile for the Western Australian barley crop over the next three years, JJ Russell, Department of Agriculture and Food Malting barley varieties differ in their flowering date and their response to change in sowing date, BH Paynter and JJ Russell, Department of Agriculture and Food Decimating weed seed banks within non-crop phases for the benefit of subsequent crops, Dr Davis Ferris, Department of Agriculture and Food Autumn cleaning yellow serradella pastures with broad spectrum herbicides – a novel weed control strategy that exploits delayed germination, Dr Davis Ferris, Department of Agriculture and Food Emerging weeds in changing farming systems, Dr Abul Hashen, Department of Agriculture and Food More glyphosate-resistant annual ryegrass populations within Western Australia, Dr Abul Hashem and Dr Catherine Borger, Department of Agriculture and Food Reasons to use only the full label herbicide rate, Stephen B. Powels, Qin Yu, Mechelle Owen, Roberto Busi, Sudheesh Manalil, University of Western Australia Flaxleaf fleabane – coming to a property near you! Sally Peltzer, Department of Agriculture and Food Glyphosate – the consequences of cutting rates! Sally Peltzer and David Minkey, Department of Agriculture and Food Benefits of crop rotations/break crops in managing soil moisture, soil health, weeds and disease – an overview, Raj Malik, Department of Agriculture and Foo

    Multiple QTLs linked to agro-morphological and physiological traits related to drought tolerance in potato.

    Get PDF
    Dissection of the genetic architecture of adaptation and abiotic stress-related traits is highly desirable for developing drought-tolerant potatoes and enhancing the resilience of existing cultivars, particularly as agricultural production in rain-fed areas may be reduced by up to 50 % by 2020. The “DMDD” potato progeny was developed at International Potato Center (CIP) by crossing the sequenced double monoploid line DM and a diploid cultivar of the Solanum tuberosum diploid Andigenum Goniocalyx group. Recently, a high-density integrated genetic map based on single nucleotide polymorphism (SNP), diversity array technology (DArT), simple sequence repeats (SSRs), and amplified fragment length polymorphism (AFLP) markers was also made available for this population. Two trials were conducted, in greenhouse and field, for drought tolerance with two treatments each, well-watered and terminal drought, in which watering was suspended 60 days after planting. The DMDD population was evaluated for agro-morphological and physiological traits before and after initiation of stress, at multiple time points. Two dense parental genetic maps were constructed using published genotypic data, and quantitative trait locus (QTL) analysis identified 45 genomic regions associated with nine traits in well-watered and terminal drought treatments and 26 potentially associated with drought stress. In this study, the strong influence of environmental factors besides water shortage on the expression of traits and QTLs reflects the multigenic control of traits related to drought tolerance. This is the first study to our knowledge in potato identifying QTLs for drought-related traits in field and greenhouse trials, giving new insights into genetic architecture of drought-related traits. Many of the QTLs identified have the potential to be used in potato breeding programs for enhanced drought tolerance

    Association and Linkage Analysis of Aluminum Tolerance Genes in Maize

    Get PDF
    Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis.). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs
    corecore