
Abstract An understanding of the genetic and environ-
mental basis of genotype×environment interaction (GEI)
is of fundamental importance in plant breeding. In map-
ping quantitative trait loci (QTLs), suitable genetic pop-
ulations are grown in different environments causing
QTLs×environment interaction (QEI). The main objec-
tive of the present study is to show how Partial Least
Squares (PLS) regression and Factorial Regression (FR)
models using genetic markers and environmental covari-
ables can be used for studying QEI related to GEI. Bio-
mass data were analyzed from a multi-environment trial
consisting of 161 lines from a F3:4 maize segregating
population originally created with the purpose of map-
ping QTLs loci and investigating adaptation differences
between highland and lowland tropical maize. PLS and
FR methods detected 30 genetic markers (out of 86) that
explained a sizeable proportion of the interaction of
maize lines over four contrasting environments involving
two low-altitude sites, one intermediate-altitude site, and
one high-altitude site for biomass production. Based on a
previous study, most of the 30 markers were associated
with QTLs for biomass and exhibited significant QEI. It
was found that marker loci in lines with positive GEI for
the highland environments contained more highland al-
leles, whereas marker loci in lines with positive GEI for
intermediate and lowland environments contained more
lowland alleles. In addition, PLS and FR models identi-

fied maximum temperature as the most-important envi-
ronmental covariable for GEI. Using a stepwise variable
selection procedure, a FR model was constructed for
GEI and QEI that exclusively included cross products
between genetic markers and environmental covariables.
Higher maximum temperature in low- and intermediate-
altitude sites affected the expression of some QTLs,
while minimum temperature affected the expression of
other QTLs.
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Introduction

Genotypes grown in multi-environment trials react dif-
ferently to environmental changes such as maximum and
minimum temperature, radiation, soil characteristics, and
precipitation. This differential response of genotypes
from one environment to another is called genotype×en-
vironment interaction (GEI). An understanding of the ge-
netic basis of adaptation and its physiological and envi-
ronmental causes is of fundamental importance for un-
derstanding GEI, for assessing the association between
phenotypic and genotypic values, and for enhancing the
selection of superior and stable genotypes.

In order to map specific genomic segments affecting
quantitative traits [quantitative trait loci (QTLs)] with
the aid of molecular markers, a set of families (or lines)
from a suitable genetic population such as an F2, back-
cross, a recombinant inbred, or doubled haploids are
grown in different environments. Various statistical mod-
els and procedures are used to detect and estimate the ef-
fect and position of QTLs (Lander and Botstein 1989;
Knapp et al. 1990; Martinez and Curnow 1992; Jansen
and Stam 1994; Zeng 1994). In these mapping studies,
QTLs with large effect in some environments and no ef-
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fect in others are commonly found; their variable effects
constitute QTL × environment interaction (QEI). Proce-
dures developed by Jiang and Zeng (1995) for estimating
the effect of QTLs for multiple traits can be used to test
the significance of QEI. Another method for studying
QEI relying on least-squares interval mapping based on
multiple regression was presented by Sari-Gorla et al.
(1997).

When a significant QEI is detected, the estimation of
the position and effects of the QTLs should be made for
each environment. Romagosa et al. (1996) defined phe-
notypic principal-component scores obtained from the
interaction in an Additive Main effect and Multiplicative
Interaction (AMMI) model (Gollob 1968; Mandel 1971;
Kempton 1984; Gauch 1988) as the traits to be mapped
for adaptation in barley (Hordeum vulgare L.), and pat-
tern analysis for studying the differential genotypic ex-
pression across environments. Recently, Balfourier et al.
(1997) used the Factorial Regression (FR) model (Denis
1988; van Eeuwijk 1996; van Eeuwijk et al. 1996) in an
attempt to interpret GEI in ryegrass (Lolium perenne L.)
populations using isozyme and environmental data as ex-
ternal covariables. However, because the study did not
involve QTLs mapping, QEI could not be quantified.

In QTL mapping it is assumed that genetic markers
associated with the phenotypic expression of a trait are
likely to be closely linked to genomic regions (QTLs)
that affect the trait. In other words, it is assumed that
there is a correlation between segregating alleles at
marker loci and their linked QTLs, and that these QTLs
give rise to associations of specific genetic markers with
phenotypic values for the trait. For quantitative traits, the
aim is to estimate the effect and position of QTLs (linked
to some genetic marker) by means of statistical models
and procedures. Thus, a logical approach to studying and
interpreting the QEI of a given trait would be to examine
the influence of the linked genetic markers (proven to be
associated with specific QTL) on the GEI of that trait to
see if the genetic markers that explain a large proportion
of the GEI are associated with QTLs having a large QEI.
Furthermore, as Balfourier et al. (1997) showed for iso-
zymes, it would be useful to examine how much of the
GEI for the trait is explained by the interaction between
specific genetic markers (associated with QTLs) with
particular environmental variables. A more-detailed de-
scription of the GEI and QEI, using molecular markers
linked to QTLs and environmental variables, would help
to identify climatic variables that affect the expression of
some QTLs in some environments.

As the number of known markers increases, the mark-
er map becomes denser. This makes it reasonable to as-
sume that soon we will be able to completely link some
markers to some specific QTLs. At that time, modelling
QTLs by direct regression on markers will be feasible.
Of course, this approach will require special measures
for dealing with (almost) collinear marker information.
In this paper we investigate the behavior of regression
models, with protection against collinearity, for pre-
screening large numbers of genetic markers for possible

inclusion in QTLs models. The same models provide the
means to look at GEI in terms of markers and environ-
mental covariables. In contrast, because of the large
number of correlated markers, standard QTLs models
will, as a rule, not efficiently survey all possible sets and
will not be appropriately protected against collinearity.

Genotype×environment interaction has been studied
using several statistical models (Crossa 1990). Some of
them, such as the analysis of variance, the regression on
the environmental mean model (Yates and Cochran
1938; Finlay and Wilkinson 1963; Eberhart and Russell
1966), and multiplicative models (such as the AMMI
model), use only the phenotypic-response variable of in-
terest. The environmental and genotypic interaction
scores of the bilinear terms are estimated using statistics
derived from the observed phenotypic data. No external
information (e.g., on genotypes or environments) can be
directly incorporated into these models. A shortcoming
of standard statistical methods for studying the GEI of
quantitative traits is that they measure the average GEI
across the entire genome and do not take into consider-
ation the possibility that different segments of the chro-
mosomes (that determine the quantitative trait) can react
differently to changing environmental conditions, and
therefore have differential contributions to the total GEI.

When information is available on external environ-
mental and/or genotypic variables, such as climatic data,
soil information, disease or genetic markers, other statis-
tical models, including Factorial Regression (FR) models
and Partial Least Squares (PLS) regression (Aastveit and
Martens 1986; Talbot and Wheelwright 1989; Vargas et
al. 1998, 1999), can be used to examine which of these
external environmental or genotypic variables influence
the GEI of the trait. The non-linear PLS regression mod-
el is useful when two different (multivariate) measure-
ment systems must be related, and when the large num-
ber of variables measured in each system should be re-
duced to a smaller number of, hopefully, more interpret-
able latent variables (commonly called PLS factors). In
the context of multi-environment trials and GEI, PLS re-
lates the two-way table of genotypes and environments
of a given trait (response variable) to external
environmental or genotypic variables (explanatory
variables) in a single estimation procedure. Any number
of environemntal and/or genotypic variables (collinear or
not) can be included in PLS; the explanatory variables
are linear combinations of the complete set of measured
environmental and/or genotypic covariables.

Factorial regression models are ordinary linear mod-
els that explain GEI by differential genotypic sensitivity
to specific environmental factors. An advantage of these
models is that hypotheses about the influence of the ex-
ternal variables on the GEI of the trait can be statistically
tested. Recently, Vargas et al. (1999) compared results
obtained from PLS and FR in two large multi-environ-
ment trials and showed that both methods identified sim-
ilar environmental and genotypic covariables that ex-
plain a large proportion of the GEI. They also showed
that when a large number of external covariables are
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used, PLS and FR are useful for identifying subsets of
the most relevant external covariables affecting GEI.
These covariables can be further introduced in a multiple
factorial regression that includes combinations of envi-
ronmental and/or genotypic covariables and their cross
products, to explain a large proportion of GEI with rela-
tively few degrees of freedom (df).

The main objectives of this study are to show how re-
gression methods such as the Partial Least Squares Re-
gression and the Factorial Regression models, together
with genetic markers and environmental covariables
(such as maximum and minimum temperature and sun
hours), can be used to: (1) detect relevant sets of corre-
lated markers and environmental variables that explain a
significant proportion of the total GEI, and (2) study the
influence of environmental variables on the expression
of QTLs with the objective of assessing and interpreting
the QEI that accounts for GEI. Data used were from a
multi-environment trial consisting of biomass measures
of maize lines from a F3:4 segregating population derived
with the purpose of mapping QTLs associated with adap-
tation differences between highland and lowland tropical
maize (Jiang et al. 1999). Large GEIs for biomass, grain
yield and harvest index have been reported by Lafitte
and Edmeades (1997) and Lafitte et al. (1997) for high-
land and lowland genotypes when they were evaluated at
sites with average mean temperatures ranging from 17°C
to 28°C.

Materials and methods

Theory

Multiplicative models for describing GEI, such as FR or AMMI,
are useful because they most-often use fewer df than the analysis
of variance and express the GEI as a string of product (bilinear)
terms comprising line sensitivities to critical environmental fac-
tors. However, while AMMI does not use explicit environmental
variables, FR does. A full description of the FR models and their
applications for interpreting GEI using environmental and/or line
covariables are given in van Eeuwijk (1996). Vargas et al. (1998)
and Vargas et al. (1999) described the theory of PLS in the context
of GEI and gave details of its algorithm. Here, FR and PLS mod-
els are briefly described using, for simplicity, the same notation as
Vargas et al. (1999).

Factorial regression models

FR models have a multiplicative structure for the interaction term.
The estimate for the classical analysis of variance GEI is the resid-
ual table consisting of the two-way table of means corrected for
line and site main effects, (GEI)ij=

–yij.–
–yi..–

–y.j.+ –y... (where –yij. is the
mean of the ith line on the jth environment and –yi.., 

–y.j., and –y... are
the means of the ith line and the jth environment, and the overall
mean, respectively).

GEI is modelled directly in relation to environmental
covariables (with the regression coefficient depending on the line),
or in relation to line covariables (with the regression coefficient
depending on the environment). A FR model for the mean of the
ith line in the jth environment, for which the interaction includes G
(centered) line covariables xi1 to xiG, can be written in matrix nota-
tion as

E(Y)=µ1Ι1’J+ττ1’J+1Iββ’+XΓΓ’ (1)

where Y=(yij) is a I×J matrix that contains the response variable
biomass of lines in environments; µ is a scalar representing the
overall mean; 1Ι and 1J are I×1 and J×1 unit vectors, respectively;
ττ=(τi) is the line main-effect vector of size I×1; and ββ=(βj) is a J×1
vector representing the main effect of sites. The GEI consists of
the product of the known line covariables, xi1 to xiG (G≤I-1), rep-
resented by the I×G matrix X=(xig) multiplied by the unknown en-
vironmental effects (potentialities), γj1 to γjG, denoted by the J×G
matrix ΓΓ=(γjg). Convenient constraints on the parameters are sum-
to-zero over i for the parameters τi and over j for βj and γjg. The
line covariables are known, but the environmental potentialities
should be estimated.

A FR model in which the GEI term contains H (centered) envi-
ronmental covariables, zj1 to zjH, can be written as

E(Y)=µ1Ι1’J+ττ1’J+1Iββ’+ζζ Z’. (2)

The first three additive terms are the same as in equation 1. The
GEI term consists of the product of lines having differential ef-
fects (sensitivity), ζi1 to ζiH (H≤J-1), that are collected in the I×H
matrix ζζ=(ζih) multiplied by the values of the environmental co-
variables, that are collected in the J×H matrix Z=(zjh). The values
of the environmental variables are known, but the line sensitivities
need to be estimated.

The structure of the FR model, including both line and envi-
ronmental covariables simultaneously, is a logical extension of
equations 1 and 2 (Denis 1988; van Eeuwijk et al. 1996) and can
be written as

E(Y)=µ1Ι1’J+ττ1’J+1Iββ’+Xνν Z’+XΓΓ’+ζζ Z’, (3)

where the G×H matrix ν=(νgh) denotes the regression coefficients
to cross products of line covariable xg with environmental covari-
able zh. Additional constraints are ζζ’X=Z’ΓΓ=0 (where 0 is a H×G
matrix of zeros). As shown by van Eeuwijk et al. (1996), environ-
mental and line covariables may be quantitative and qualitative,
and more complicated FR models are possible by combining
quantitative and qualitative covariables. Note in equation 3 that
because the line and environmental covariables are centered, ele-
ments of the matrices X (value of the line covariable g on the line
i) and Z’ (value of the environmental covariable h on the site j) are
positive (above average) or negative (below average). These signs
combine with the positive or negative regression coefficient of the
cross product between the line covariable xg with the environmen-
tal covariable zh to produce a Xνν Z’ interaction term that can be
positive or negative.

Partial least squares regression

The main objective of the PLS method is to identify a linear com-
bination of the explanatory variables that provides latent vectors
that optimally predict the response variable using an iterative pro-
cedure. The number of PLS factors to be retained is determined by
a cross-validation procedure (Stone 1974) and the F-test proposed
by Osten (1988). For the multivariate PLS, the response variable
(biomass) is represented by the matrix Y of line performance on
environments and the matrix Z=(z1, ..., zS) represents S environ-
mental explanatory variables, such as temperature, precipitation,
etc. These matrices can be expressed in a bilinear form as

Z=TP’+E and (4)
Y=TQ’+F (5)

where matrix T contains the Z-scores, matrix P has the Z-load-
ings, matrix Q contains the Y-loadings, and E and F are the resid-
ual matrices. It is clear from equations 4 and 5 that the relationship
between Z and Y is transmitted through the latent variables of ma-
trix T.

Therefore, when GEI is explained using S environmental co-
variables (Z), Vargas et al. (1999) described the above equations
using the transposition of Y such that, for T=ZW and ζζ=QW’,
E(Y’)=(TQ’)’=QW’Z’=ζζZ’ (the same as the last term of equation
2). The rows of matrix T contain the Z-scores indexed by environ-
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ments; the rows of matrix W have the Z-weights indexed by the
environmental covariables; the rows of the matrix Q include the
Y-loadings indexed by lines; and matrix ζ has the PLS approxima-
tion to the regression coefficients of Y to the explanatory covari-
ables Z. When the GEI is explained using the K-line covariables
represented by matrix X=(x1, ..., xK), then T=XW and ΓΓ=QW’, so
that E(Y)=TQ’=XWQ’=XΓΓ’ (the same as the last term of equa-
tion 1). The rows of T have X-scores for lines; the rows of W in-
clude X-weights indexed by line variables; the rows of Q contain
the Y-loadings of the environments; and ΓΓ has PLS approximation
to the regression coefficients of Y to the explanatory covariables
X.

Results of the bilinear decomposition obtained from PLS can
be summarized in a graphical form (biplot) that includes the repre-
sentation of lines, environments, and covariables, i.e., matrices T,
W, and Q are shown in the same biplot. The PLS biplot approxi-
mates the interactions of lines on environments (projections of
rows of T on the rows of Q or vice versa) and it also approximates
the regression coefficients of lines (environments) on environmen-
tal (line) covariables (projection of rows of W on the rows of Q or
vice versa). A perpendicular projection of the lines on one site
vector, extended in either direction, gives the relative values of the
lines for the GEI.

Experimental data

Phenotypic and genotypic data are the same as used by Jiang et al.
(1999) for identifying QTLs associated with the adaptation differ-
ences of 161 lines of an F3:4 population derived from the cross be-
tween lowland lines derived from Population 21 (Johnson et al.
1986) and highland lines derived from germplasm collected in Pe-
ru, Mexico, Colombia, Bolivia, and Ecuador (Eagles and Lothrop,
1994). The 161 lines were tested in four contrasting environments
of Mexico: Poza Rica (60 masl) winter season (PR), Tlaltizapan
(940 masl) summer season (TL), El Batan (2240 masl) summer
season (BA), and Toluca (2650 masl) summer season (TO). Sever-
al traits were measured in each of the 161 lines, but only biomass,
measured as the total weight above-ground (g m–2), is included in
this study. The 161 lines were arranged in an alpha-lattice design
with two replicates at each site. Composite interval mapping
(CIM) procedures (Jansen and Stam 1994; Zeng 1994) were used
for QTL analysis. Full details of the marker genotype determina-
tion, linkage map construction, QTL analysis, critical values used
for QTL detection, and test of QTL×site interaction are given in
Jiang et al. (1999).

The 161 lines were genotyped at 86 RFLP (Restrictive Frac-
tion Length Polymorphic) loci, and results coded by the number of
alleles from the highland parent as 2, 1 and 0, which represent the
homozygous highland, heterozygous and homozygous lowland
lines, respectively. As some marker data were missing or domi-
nant (so that two or three lines are possible) the expected value of
the number of alleles from the highland parent was calculated
(Jiang and Zeng 1997); this expected value lies between 0 and 2.
When these coded values are used as the independent variables in
regression, the estimated regression coefficients represent the ad-
ditive effect of the marker locus, which is generally regarded as
the replacement effect (allele substitution effect or additive effect)
of the lowland allele by the corresponding highland allele at the
marker locus in the relevant environment.

The 86 RFLP markers were used in PLS regression and in the
FR model as line variables and were named as a(b) where “a” de-
notes the chromosome number and “b” is the marker number with-
in chromosome “a”. Numbers denoted by “b” are in sequential or-
der in relation to their location on the chromosome [i.e., 5(1),
5(2),..., 5(10) indicate that markers 1 and 2 are located closer to-
gether in chromosome 5 than markers 1 and 10].

In each of the sites, the crop cycle was divided into three stag-
es: the vegetative stage (from sowing to 2 weeks before flower-
ing), the flowering stage (from 2 weeks before flowering to two
weeks after flowering), and the grain-filling stage (from 2 weeks
after flowering until harvest date). The nine climatic covariables

used in the PLS regression and in the FR model were: mean daily
maximum temperature during the vegetative stage, flowering
stage, and grain-filling stage (MTV, MTF, and MTG, respective-
ly); mean daily minimum temperature during the vegetative stage,
flowering stage, and grain-filling stage (mTV, mTF, and mTG, re-
spectively); and sun hours per day during the vegetative stage,
flowering stage, and grain-filling stage (SHV, SHF, and SHG, re-
spectively). Daily maximum and minimum temperatures and sun
hours were recorded at a meteorological station 200 m or less
from the field trials.

When line covariables are used in the PLS regression, the re-
sponse matrix of biomass measurements, Y, has 161 rows (lines)
and 4 columns (sites), whereas the matrix of explanatory line co-
variables (genetic markers), X, has 161 rows (lines) and 86 col-
umns (genetic markers). When environmental covariables are con-
sidered in the PLS analysis, the response matrix of biomass mea-
surements, Y, has 4 rows (sites) and 161 columns (lines), whereas
the matrix of explanatory climatic variables, X, has 4 rows corre-
sponding to sites and 9 columns corresponding to climatic vari-
ables. For the PLS approach, the Y variables correspond to the
line × site interaction matrix (residual matrix after adjusting for
line and site main effects).

Results and discussion

The analysis of variance showed that 61% of the total
sum of squares is explained by site mean differences,
13% by site×line interaction, and 9% by differences
among line means (all were highly significant). As ex-
pected, the large genetic variability of the lines of the
F3:4 population and the environmental differences of the
four testing sites made the GEI of biomass large and
complex. This result agreed with that of Lafitte et al.
(1997) who showed a large GEI of maize genotypes for
yield and yield components when tested in different ther-
mal regimes. The following analyses will attempt to ex-
plain the GEI of biomass in terms of genetic markers
linked to QTLs and environmental variables.

Explaining line×site interaction using partial least
squares and individual factorial regression with genetic
markers as explanatory variables

Individual FRs with each genetic marker covariable were
performed to determine their relative contribution to the
GEI sum of squares. Although 40 individual factorial re-
gressions (each using 3 df) for the genetic markers’ co-
variables were significant at the 5% level, the first 30
markers with the largest sum of squares (Table 1) are the
most interesting.

The cross-validation assessment and Osten’s F-test
for the number of significant PLS factors indicated that
the first two PLS factors (out of 86) were significant for
prediction. The first and second factors explained 17%
and 10% of the variability in the GEI matrix of biomass,
respectively. Table 1 shows the loadings for the first and
second PLS factors of the 30 most-important genetic
markers ordered by the first PLS factor. From these 30
markers, 27 correspond to markers determined by indi-
vidual FRs as the most important covariables for ex-
plaining the GEI of biomass (Table 1). The rank order of
the genetic markers in relation to their contribution to
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explaining line×site interaction of biomass was very sim-
ilar for the PLS method (ranking on the absolute size
loading on the first axis) and the FR model (ranking on
the SS explained). Note that although markers 4(3), 4(4),
and 10(5) from PLS (Table 1) were not within the first
30 significant markers determined by individual FR, they
were included within the following ten significant ones.
On the other hand, markers, 6(4), 10(8), and 8(6) from
FR (Table 1) were ranked 37th, 39th, and 63th, respective-
ly, by the first PLS factor. The 30 genetic markers identi-
fied by PLS were considered the most important line co-
variables for explaining the GEI of biomass and were in-
cluded in the PLS biplot.

The PLS biplot with the X scores for the lines, the Y
loadings for the sites, and enriched with the X weights
for the 30 genetic marker covariables identified above, is
depicted in Fig. 1. The first PLS factor contrasted the
low-altitude site, Poza Rica (PR), in winter, and the mid-
altitude site, Tlaltizapan (TL), in summer, with the high-
altitude sites El Batan (BA) and Toluca (TO). The sec-
ond PLS factor discriminated between the lowland win-
ter site (PR) versus the mid-altitude summer site (TL),
and separated the two highland sites (BA and TO). A
line having a positive (orthogonal) projection on a site
vector (i.e., the line point and environmental vector are

in the same quadrant) has positive interaction at that site,
whereas a line located in the opposite direction (opposite
quadrant) has a negative interaction with that same site.
For example, some lines with a positive projection on
the TO vector were 178, 2, 189, 124, 141, 42, 61, 67,
139, 106, 19, 148, 136, 144, 157, 121, 57, 127, 194, 163,
17, 156, and 174. Note that the lines are ordered by de-
creasing magnitude on the basis of their projections on
the TO vector, such that line 178 has the largest GEI fol-
lowed by line 2, and so forth. These lines interacted pos-
itively with TO; most of them have positive interaction
(residual) values for biomass with TO (mean GEI value
of 138.545 g m2), but negative interaction values with
TL, opposite quadrant (mean GEI value of –106.254 g
m2) (Table 2). On the other hand, some lines located on
the opposite side (176, 8, 187, 130, 4, 110, 50, 33, 54,
149, 166, 180, 56, 35, and 30) have negative biomass in-
teraction (residual) values with TO (mean GEI value of
–106.006 g m2), but positive interaction values with TL
(mean GEI value of 122.018 g m2) (Table 2). Lines close
to the origin of the PLS biplot (0,0) have small interac-
tion values with sites, and thus were not considered.

When the PLS biplot is enriched with the X weights
of the 30 most-important genetic markers, it is interest-
ing to observe the association between the subset of
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Table 1 The 30 most-impor-
tant markers, as determined by
individual FR, with the sum of
squares arranged in decreasing
order of importance with re-
spect to their contribution in
explaining site×line interaction,
and X loadings of the first two
PLS factors (PLS1 and PLS2)
of the 30 most-important genet-
ic markers ordered by decreas-
ing loading values for the first
PLS factor (PLS1)

Source Individual FR Marker PLS loadings

df Sum of squares Prob >F PLS1 PLS2
×10–5

Site×line 480 149.271 0.0000

2(1) 3 9.995 0.0000 2(1) 0.2756 0.0999
6(5) 3 6.538 0.0000 5(3) 0.2185 –0.0451
6(6) 3 5.964 0.0000 2(2) 0.2149 0.0448
2(2) 3 5.809 0.0000 5(5) 0.1916 0.0265
5(3) 3 5.704 0.0000 10(6) 0.1831 0.0510
6(4)a 3 5.284 0.0000 3(5) 0.1821 –0.0127
5(5) 3 4.653 0.0000 1(8) 0.1693 –0.1311
3(5) 3 4.558 0.0001 9(1) –0.1657 0.0563

10(6) 3 4.521 0.0001 1(4) 0.1616 –0.0734
9(1) 3 3.978 0.0004 5(4) 0.1591 0.0177

10(7) 3 3.873 0.0005 10(9) 0.1577 0.0633
10(9) 3 3.866 0.0005 1(5) 0.1574 –0.0336

1(4) 3 3.753 0.0006 3(6) 0.1556 –0.0380
1(8) 3 3.726 0.0006 1(9) 0.1544 –0.1201
3(6) 3 3.613 0.0008 5(6) 0.1542 0.0391
1(7) 3 3.577 0.0009 6(5) 0.1489 0.2641
5(6) 3 3.520 0.0010 9(3) –0.1482 0.1061
9(3) 3 3.496 0.0011 9(2) –0.1438 0.1092
1(5) 3 3.475 0.0011 3(4) 0.1411 0.0310
5(4) 3 3.468 0.0012 6(6) 0.1377 0.2553

10(8)a 3 3.437 0.0012 5(8) 0.1361 –0.0973
9(2) 3 3.250 0.0018 1(10) 0.1347 –0.1561
1(2) 3 3.107 0.0024 4(3)b 0.1337 –0.1201
1(9) 3 3.073 0.0026 4(4)b 0.1224 –0.0875
3(4) 3 2.970 0.0033 1(3) 0.1222 –0.0681
5(8) 3 2.812 0.0046 10(5)b 0.1205 0.0130
1(10) 3 2.687 0.0060 1(7) 0.1196 –0.1931
3(7) 3 2.661 0.0063 3(7) 0.1171 0.0368
1(3) 3 2.598 0.0072 10(7) 0.1158 0.1694
8(6)a 3 2.596 0.0073 1(2) 0.1153 0.1155

Pooled error 536 114.628

a Genetic markers 6(4), 10(8)
8(6) ranked 37th, 39th and 63th,
respectively, by the first PLS
factor
b Within the 40 significant ge-
netic markers determined by
individual FR



markers with the subset of lines that showed positive (or
negative) interaction with certain environments, and to ex-
amine the allele substitution of these lines for those mark-
ers in terms of homozygous highland (coded value=2),
heterozygous (coded value=1), and homozygous lowland
(coded value=0). It could be hypothetized that the differ-
ent adaptation of specific lines to the contrasting environ-
ments, (PR and TL) vs (TO and BA) or (PR) vs (BA) and
(TO) vs (TL) could be associated, at least in part, to a dif-
ferent allele substitution of the markers associated with
those subsets of lines. Furthermore, if these markers are
associated with QTLs, it would be expected that the dif-
ferent allele substitution of the marker should be associat-
ed with a different allele substitution of the linked QTL.

In general, the PLS biplot showed that the 30 most-
relevant RFLP markers are separated into two major
groups; one group having 27 markers with high positive
loadings for the first PLS factor and associated with

some lines with a positive interaction with the two high-
land sites, TO and BA. All markers (and lines) that are
located between the acute angle of two site vectors have
a positive interaction with both sites, whereas all mark-
ers (and lines) between the negatively extended vectors
(on the other side of the origin) have a negative interac-
tion with both environments. The area between the two
represents a situation in which the markers (and lines)
have a positive interaction with one environment and a
negative interaction with another environment. As previ-
ously mentioned, the perpendicular projection of a genet-
ic marker on a site approximates the regression coeffi-
cient of the site on the allele state of that marker. For ex-
ample, markers 6(5), 6(6) and 10(7) have a positive in-
teraction with TO, but are negative with respect to BA.
Markers 1–3 of chromosome 9, with negative loadings
for the first PLS factor, are associated with lines having a
positive interaction with TL and PR.
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Table 2 Number (or expected
number) of alleles from the
highland parent of genetic
markers for lines with a posi-
tive GEI of biomass with To-
luca and Tlaltizapan, and resid-
uals (g m–2) (interaction) for
biomass

Line Genetic marker Tlaltizapan Toluca
residual residual

2(1)a 2(2)a 6(5)a 6(6)a 10(7)a 10(6)a

Lines with a positive GEI of biomass in Toluca
178 1 1.1 2 2 2 2 –194.307 83.535

2 2 1.8 1 1 2 2 –94.682 216.160
189 1 1.1 2 2 2 2 –94.682 280.160
124 1 1.1 2 2 2 2 –180.057 21.285
141 1 1.1 2 2 1 1 –143.057 184.285

42 1 1.1 1 1 1.8 1 4.693 39.035
61 0 1.1 2 2 1.8 1 –96.057 184.285
67 2 1.4 1 1 0.4 2 –275.682 180.660

139 1 1.6 1 1 1 1 –31.682 17.660
106 1 1.1 2 2 1 1 –64.557 146.285

19 1 1.1 1 1 1.1 1 –74.182 112.660
148 2 1.4 0 0 1 2 –93.057 240.285
136 1 1.1 1 1 1 1 –116.307 315.535
144 2 1.4 1 1 1 1 –340.432 31.410
157 1 1.6 2 2 1 1 –185.807 22.035
121 2 1.4 2 2 2 2 –225.932 268.410

57 2 1.2 1 1 0.2 1 56.818 –16.340
127 1 0.0 2 2 2 1.2 –217.682 145.660
194 2 1.8 2 2 0.8 1 20.318 89.660
163 0 0.0 2 2 1 1 –3.307 163.535

17 1 1.1 1 1 1.2 1.9 –101.432 208.410
156 1 1.1 1 1 1 1 201.068 –18.090
174 2 1.4 1 1 2 1 –264.807 252.035
Mean 1.26 1.17 1.43 1.43 1.31 1.35 –109.339 137.763

Lines with a positive GEI of biomass in Tlaltizapan
176 0 0 0 0 0 0 229.318 –103.340

8 0 0 2 2 0 0 –113.557 –3.215
187 2 1.4 1 1 0 0 76.943 –89.215
130 1 1.1 2 2 0 0 148.693 –79.965

4 1 0 1 1 1.8 1.1 112.568 –41.590
110 1 1.6 1 1 0.2 1 65.318 –2.840

50 1 0 0 0 0.8 0.1 74.693 –89.465
33 0 0 1 1 1 1 99.568 –160.590
54 1 1.1 0 0 0 0 221.818 –145.840

149 1 1.6 0 0 0 0 –148.432 –258.590
166 0 0 0 0 0.8 0 212.443 –151.215
180 1 1.1 1 1 0 0 403.443 –65.715

56 0 1.1 1 1 0.8 0 24.068 –106.090
35 1 1.1 0 0 1.2 1.9 278.568 –63.090
30 1 1.1 0 0 0 0 144.818 –229.340

Mean 0.73 0.74 0.66 0.66 0.44 0.34 122.018 –106.006

a Markers associated with lines
having a positive interaction in
Toluca



More specific associations between lines, subsets of
linked markers, and sites can be observed. Markers 7–10
of chromosome 1, markers 3–4 of chromosome 4, and
marker 8 of chromosome 5 tended to be more associated
with lines having a positive biomass interaction with
BA; markers 5 and 6 of chromosome 6, markers 6, 7,
and 9 of chromosome 10, and markers 1 and 2 of chro-
mosome 2 tended to be more associated with lines hav-
ing a positive biomass interaction with TO; whereas
markers 1–3 of chromosome 9 are associated with lines
having a positive interaction with PR. Furthermore,
linked marker subsets [1(3), 1(4), 1(5)], [3(4), 3(5), 3(6),
3(7)], [5(3), 5(4), 5(5), 5(6)] and [10(5) to 10(9)] tended
to be located around the limit between the upper and
lower right quadrants of the PLS biplot and are associat-
ed with lines having a positive interaction with sites TO
and BA. Thus, the PLS biplot seems to identify clusters
of linked (correlated) markers that are also associated
with sets of specific lines having adaptation to particular
environments.

It is expected that marker subset [2(1), 2(2), 6(5),
6(6), 10(6), and 10(7)] (with the highest projections on
the TO vector) associated with lines having a positive in-
teraction with highland site TO, will tend to have more
alleles from the highland parent (coded values=2 and 1)
than from the lowland parent (coded value=0). Lines lo-
cated on the opposite quadrant of the PLS biplot, mean-
while, have a positive biomass interaction with site TL
(and negative with TO) and will tend to have more al-
leles from the lowland parent than from the highland
parent for that subset of markers. As shown in Table 2,
lines with a positive interaction with TO had more al-
leles (or expected number of alleles) from the highland
parent associated with markers 2(1), 2(2), 6(5), 6(6),
10(6), and 10(7) (mean allele code ranged from 1.17 to
1.43) than those lines with a positive biomass interaction
with TL (mean allele code ranged from 0.34 to 0.74). No
highland marker alleles with important contributions to
explaining GEI were associated with lines with positive
interaction effects in TL.

Similarly, lines having a positive interaction with the
highland site BA (as opposed to lowland site PR) had, on
average, more highland alleles than lowland alleles for
marker subset [1(7), 1(8), 1(9), 1(10), 4(3), 4(4), and
5(8)]. Conversely, lines with a negative interaction with
BA (positive interaction with PR, opposite quadrant) had
more alleles from the lowland parent for that marker
subset (data not shown).

The PLS method attempts to reduce the variability of
a large and complex multi-dimensional data set to a few
dimensions. In this example, there were 86 PLS factors,
but only two were found significant by Osten’s test; they
explained 27% of the complex GEI for biomass. It is to
be expected that some distortions will occur when repre-
senting lines, sites, and genetic markers in a two-dimen-
sional diagram such as the PLS biplot. For example, site
PR in Fig. 1 had a high loading for the third PLS factor,
and lines such as 13, 131, 175 and 185, with low scores
for the third PLS factor, are not highly associated with

PR. Thus, they could not be considered as lines showing
a positive GEI with PR.

From the 30 most useful markers for explaining the
GEI of biomass, 27 had a high positive loading for the
first PLS factor and are associated with lines having a
positive interaction in highland sites TO and BA. The
majority of these markers in lines with a positive bio-
mass GEI in TO and BA had one or two alleles from the
highland parents. Only three linked markers (1, 2 and 3
in chromosome 9) are associated with lines having a pos-
itive interaction with mid-altitude site TL and lowland
site PR (a negative GEI with TO and BA). However,
markers in lines with a positive GEI of biomass in PR
had more alleles from the highland parents than markers
in lines with a positive GEI in BA. This result would in-
dicate that some lines with specific adaptation to low-
land sites contain alleles from the highland parent, such
as those in markers 1–3 from chromosome 9, that pro-
vide adaptation to lowland environmental conditions.
This result is not surprising and could also have occurred
for some markers associated with lines having a positive
GEI with the lowland site TL (as opposed to TO); how-
ever, no relevant markers were associated with lines
adapted to TL environmental conditions (Fig. 1). This
small effect of the highland alleles in lowland environ-
ments agreed with results found by Jiang et al. (1999).

Markers 2(1), 5(3), 2(2), 5(5), 10(6), 3(5), 1(8), 9(1),
1(4), and 5(4) had the ten highest absolute loading val-
ues for the first PLS factor (Table 1). These markers, ex-
cept 9(1), are between the acute angle formed by TO and
BA site-vectors and are associated with lines having a
positive interaction with BA and TO such as 148, 67,
178, 2, 139, 144 and 19, etc. These lines had, for those
markers, more alleles from the highland parent than
those lines located on the opposite side of the PLS bi-
plot, which showed a negative interaction with BA and
TO, but a positive interaction to PR and TL. Lines more
adapted to PR and TL were, on average, more homozy-
gous and heterozygous for lowland alleles in those mark-
ers than lines more adapted to the highland sites TO and
BA (data not shown). This result would indicate that
lowland alleles tend to show a broader adaptation to the
lowland site PR and to the mid-altitude site TL than
highland alleles (adapted only to highland sites TO and
BA), possibly because PR winter and TL summer have
somewhat similar temperatures, though the radiation is
much lower in PR winter at all growth stages.

The composite interval mapping method used by
Jiang et al. (1999) to map multiple QTLs and to assess
their interaction with environments found six QTLs with
significant effects and one QTL with a marginally signif-
icant effect for biomass. The authors found some signifi-
cant QEI. The main QTLs for biomass were located in
chromosomes 2, 3, 5, 6, 7, 8, and 10. Significant QTLs
for biomass were located around markers 2(1)-2(2), 5(3)-
5(4), 6(5)-6(7), and 10(6)-10(9) with significant QEI.
These results agreed with our findings concerning the
most relevant genetic markers found by the PLS and FR
models for explaining the GEI of biomass. The PLS and

617



FR models found markers 2(1)-2(2), 5(3)-5(5), 6(5)-6(6),
and 10(6)-10(7) to be important for explaining the GEI
of biomass. These markers were linked to QTLs that had
significant QEI. On the other hand, Jiang et al. (1999)
found significant, or marginally significant, effects of
QTLs located around markers 3(9)-3(10), 7(2)-7(3), and
8(4)-8(5) with no significant QEI. These results seem to
agree with results from the PLS and FR models in which
no markers from chromosomes 7 and 8, and only mark-
ers 4 to 7 of chromosome 3, had an important part in ex-
plaining the GEI of biomass. Jiang et al. (1999) reported
several groups of QTLs, the most relevant being located
at the end region of chromosome 10, showing large ef-
fects on biomass and grain yield favoring lowland al-
leles. This also agreed with the PLS and FR models that
found markers 6, 7, and 9 of chromosome 10 are impor-

tant genetic covariables for explaining the GEI of bio-
mass in favor of lowland alleles for lines more adapted
to TL and PR (right side of Fig. 1).

It is expected that lines with a positive interaction
with a highland or lowland site should have more (or
less) alleles from the highland parent (additive type of
effect), which are responsible for that specific adapta-
tion. For example, for biomass, significant QTLs in
chromosome 2 for TO and TL were reported by Jiang et
al. (1999). The PLS method identified markers 2(1) and
2(2) as important covariables for explaining GEI. The
PLS biplot (Fig. 1) also suggests that markers in lines
having a positive interaction with highland sites TO and
BA tended to have more alleles from the highland par-
ents than markers in lines more adapted to TL and PR.
Conversely, Jiang et al. (1999) found that highland al-
leles had little detectable effect on biomass in lowland
sites. This agrees with the findings of the present study
where only three markers out of 30, 1–3 from chromo-
some 9, contain more alleles from the highland parent in
those lines with specific adaptation to lowland sites.
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Fig. 1 Biplot of the first and second PLS factors representing the
Y loadings of four sites (PR=Poza Rica; TL=Tlaltizapan; BA=El
Batan; TO=Toluca); the X scores of 161 tropical maize lines
(1–161) enriched with the X weights of 30 genetic markers



Explaining line×site interaction using partial least
squares and individual factorial regression 
with environmental covariables as explanatory variables

Characteristics of the four sites with respect to maximum
and minimum temperatures and sun hours during vegeta-
tive, flowering, and grain-filling stages are given in Table
3. Clearly, the mid-altitude site (TL) and lowland site
(PR) had higher maximum and minimum temperatures
during the three growing stages, followed by the highland
site BA. Toluca temperatures are at the margin for maize
growth. These four sites showed similar sun hours during
the entire growth cycle, except for TL with maximum sun
hours during the flowering and grain-filling stages, and
PR with minimum sun hours during all stages.

The cross-validation assesment and Osten’s F-test for
the number of significant PLS factors indicated that only
the first PLS factor (out of four) was significant for pre-
diction and explained 50% of the variability in the GEI

matrix. The second factor was not significant and ex-
plained 24% of the GEI. MTV, MTF, and MTG had the
highest loading values, followed by mTV, mTF, and
mTG (Table 4). Results from the individual FR models
gave the same results as PLS and ranked the environ-
mental variables exactly the same as PLS (Table 4). Each
individual FR uses 160 df.

The PLS biplot with the Z scores for sites and the Y
loadings for the lines, and enriched with the Z weights
for the nine environmental covariables, is depicted in
Fig. 2. The first PLS factor contrasted Poza Rica and
Tlaltizapan with El Batan and Toluca. Three sub-groups
of environmental covariables are depicted in Fig. 2:
(mTV, mTG, mTF), (MTG, MTV, MTF), and (SHG,
SHF, SHV). The most sun hours during the three grow-
ing stages occurred in Tlaltizapan and the least in Poza
Rica. As expected, these results showed that the maxi-
mum temperature during the entire growth stage is the
main environmental factor causing the GEI of biomass.

Figure 2 showed that, in general, the distribution of
lines across the upper and lower half of the PLS biplot
followed a similar pattern to that observed in Fig. 1.
However, distortions occurred because some lines and/or
sites have large loadings for the third PLS factor. This is
clear for TO, which had a high score for the third PLS
factor, but appeared close to BA in Fig. 2.

Explaining line×site interaction using multiple factorial
regression with genetic markers, environmental 
explanatory covariables, and their cross products

A strategy for selecting relevant sets of line and environ-
mental covariables, proposed by Vargas et al. (1999), is
to use multiple FR coupled to a stepwise selection proce-
dure for multiple FR models. The authors found that PLS
was effective in grouping correlated covariables and that
the multiple FR with a stepwise procedure selected rep-
resentative covariables from each of the sub-groups de-
picted in the PLS biplot. For example, if there were four
subsets of covariables roughly delineated by each of the

619

Table 3 Mean daily maximum temperature (°C) during the vege-
tative stage (MTV), flowring stage (MTF) and grain-filling stage
(MTG); mean daily minimum temperature (°C) during the vegeta-
tive stage (mTV), flowering stage (mTF) and grain-filling stage
(mTG); sun hours per day during the vegetative stage (SHV),
flowering stage (SHF), and grain-filling stage (SHG), for Toluca
(TO), El Batan (BA), Tlaltizapan (TL), and Poza Rica (PR)

Variable Site

TO BA TL PR

MTV 22.78 25.38 32.02 26.94
MTF 20.81 24.40 32.94 25.38
MTG 20.73 24.03 30.48 27.87
mTV 3.22 9.79 16.67 17.29
mTF 7.06 8.58 17.64 15.62
mTG 3.74 7.65 17.50 16.67
SHV 6.33 7.12 6.64 4.58
SHF 5.54 5.13 9.60 3.66
SHG 5.54 6.10 7.96 5.33

Elevation (m) 2650 2240 940 60

Mean biomass (g m–2) 868.5 1013.9 868.1 408.2

Table 4 Z loadings of the first
and second PLS factors for
nine environmental covariables
and partition of the total
site×line interaction variance in
nine individual factorial regres-
sions (FRs)

Covariable % Variance of site×line interaction explained by

Partial least squares Factorial regression

PLS 1 PLS 2 Source df Mean square F Prob >F
×105

Site×line 480 0.311 1.45 0.0001

MTVa 0.3938 –0.0682 MTV 160 0.511 2.39 0.0000
MTF 0.3902 –0.1297 MTF 160 0.504 2.35 0.0000
MTG 0.3836 0.1261 MTG 160 0.495 2.31 0.0000
mTF 0.3622 0.2159 mTF 160 0.470 2.19 0.0000
mTG 0.3540 0.2638 mTG 160 0.452 2.11 0.0000
mTV 0.3411 0.2795 mTV 160 0.429 2.01 0.0000
SHG 0.3207 –0.3976 SHG 160 0.398 1.86 0.0000
SHF 0.2641 –0.4393 SHF 160 0.337 1.57 0.0009
SHV –0.0089 –0.6459 SHV 160 0.197 0.92 0.7233

Pooled error 536 0.213

a MT: maximum temperature;
mT: minimum temperature;
SH: sun hours per day; V: veg-
etative stage; F: flowering
stage; G: grain-filling stage



four quadrants of the PLS biplot, the multiple FR with
the stepwise procedure selects representative covariables
from each subset. After identifying the most important
subset of line and environmental covariables and their
relevant representatives, Vargas et al. (1999) proposed
fitting a multiple FR model with a stepwise procedure,
including either the cross products among all the covari-
ables or the cross product among the most-relevant co-
variables.

In the present study we started with the complete site
× line term. Then the lines were replaced by the 30

markers (determined by PLS) (e.g., site×marker), the
sites were substituted by the nine environmental covari-
ables (e.g., environmental covariable × line), and finally
the 30×9=270 cross-products terms were added. These
were considered the three basic analyses, and in each
case a multiple FR with a stepwise procedure for identi-
fying the significant terms was used. In addition, other
multiple FR models, including all 86 markers or other
specific subsets of markers (e.g., marker blocks per chro-
mosome), as well as specific subsets of environmental
covariables and their corresponding cross products, were
fitted and their results were discussed and compared with
the three basic analyses.

Results of a stepwise variable search for a multiple
FR, including the 30 terms of the type site×marker, led
to a model with ten significant terms (Table 5) listed in
the same order as in the model. The model explained
27% of the GEI with 30 df and left a non-significant de-
viation. Note that, as expected from results obtained by
Vargas et al. (1999), the stepwise procedure selected
markers from the subsets of linked markers suggested by
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Fig. 2 Biplot of the first and second PLS factors representing the
Z scores of four sites (PR=Poza Rica; TL=Tlaltizapan; BA=El Ba-
tan; TO=Toluca), the Y loadings of 161 tropical maize lines
(1–161) enriched with the Z weights of nine environmental vari-
ables. Those variables are: mean daily maximum temperature dur-
ing the vegetative stage (MTV); flowering stage (MTF), grain-fill-
ing stage (MTG); mean daily minimum temperature during the
vegetative stage (mTV); flowering stage (mTF), grain-filling stage
(mTG); sun hours per day during the vegetative stage (SHV); flow-
ering stage (SHF), grain-filling stage (SHG)



the PLS biplot (Fig. 1). Furthermore, the terms site×2(1),
site×6(5), site×5(3), site×1(7), and site×10(6) were the
terms first selected and explained 20.3% of the GEI with
15 df (Table 5). In addition, multiple FR (using the step-
wise procedure with blocks of markers included per
chromosome) were performed for detecting the signifi-
cant site×chromosome terms (data not shown). Then, all
the significant site×marker terms from each chromosome
were collected and simultaneously fitted in a multiple
FR (analyses not shown). Using this procedure, 21 sig-
nificant site×marker terms were identified and then in-
troduced as the independent variable set in a stepwise
variable search. In the final model, 13 site×marker terms
were included. The first four terms included in the
search were (in order of appearance) site×2(1), site×6(5),
site×5(3), and site×10(6); they accounted for 17.4% of
the GEI. These results confirmed those previously found
by individual FR, by multiple FR using 30 markers, and
the findings of Jiang et al. (1999).

Concerning the nine environmental covariables in-
cluded in the multiple FR with a stepwise procedure, on-
ly the term line × MTV was significant; it explained
54.8% of the GEI of biomass with 160 df (Table 5) leav-
ing a non-significant deviation. This result agreed with

that of PLS and FR which found that maximum tempera-
ture during the vegetative stage (MTV) was the most im-
portant environmental covariable for explaining the GEI
of biomass (Table 4).

The multiple FR with a stepwise procedure using 270
cross products from 30 genetic markers with nine envi-
ronmental variables resulted in a model with 13 cross
products explaining 26% of the GEI (Table 5, terms are
listed in order of inclusion) and left a non-significant de-
viation sum of squares. Except for 9(2), all the markers
found to be significant when fitting the model site×mark-
er with 30 marker covariables, showed significant cross
products with various environmental covariables. On the
other hand, several environmental variables that were
non-significant when fitting FR model line×environmen-
tal covariable with nine environmental covariables,
showed significant cross products with some molecular
markers. Although MTV seems to be the most important
environmental covariable from the perspective of plant
physiology, other maximum temperatures seem to have
some importance on the cross products simply because
they are highly correlated with MTV. It is interesting that
cross products involving markers 2(1), 6(5), 5(3), 3(7),
and 10(6) [MTG×2(1), MTF×6(5), mTG×5(3),
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Table 5 Analysis of variance
for stepwise multiple factorial
regression models with line co-
variables, environmental co-
variables, and their cross prod-
ucts

Source df Sum of squares Mean squares F Prob >F
×105 ×105

Genetic marker covariables
Site×line 480 149.271 0.311 1.46 0.0001
Site×2(1) 3 9.996 3.332 15.86 0.0000
Site×6(5) 3 7.013 2.338 11.13 0.0000
Site×5(3) 3 5.047 1.682 8.01 0.0000
Site×1(7) 3 4.515 1.505 7.16 0.0001
Site×10(6) 3 3.751 1.250 5.95 0.0005
Site×1(4) 3 2.421 0.807 3.84 0.0096
Site×5(8) 3 2.335 0.778 3.70 0.0116
Site×4(3) 3 2.007 0.669 3.18 0.0235
Site×9(1) 3 1.741 0.580 2.76 0.0414
Site×9(2) 3 1.803 0.600 2.86 0.0363
Deviation 450 108.641 0.241 1.14 0.0730
Pooled error 536 114.628 0.213

Environmental covariables
Site×line 480 149.271 0.311 1.46 0.0001
Line×MTV 160 81.800 5.113 2.39 0.0001
Deviation 320 67.470 0.210 0.99 0.5366
Pooled error 536 114.628 0.213

Cross products
Site×Line 480 149.271 0.311 1.46 0.0001
MTG×2(1) 1 9.890 9.890 47.09 0.0000
MTF×6(5) 1 5.222 5.222 24.86 0.0000
mTG×5(3) 1 5.002 5.002 23.81 0.0000
MTF×3(7) 1 5.109 5.109 24.32 0.0000
MTG×10(6) 1 3.546 3.546 16.88 0.0000
mTF×1(4) 1 2.017 2.017 9.60 0.0020
mTF×5(8) 1 1.305 1.305 6.21 0.0129
mTF×1(7) 1 1.280 1.280 6.09 0.0138
mTV×1(7) 1 1.287 1.287 6.12 0.0136
MTF×10(9) 1 0.996 0.996 4.74 0.0298
mTF×4(3) 1 1.248 1.248 5.94 0.0151
MTV×9(1) 1 0.971 0.971 4.62 0.0319
mTV×5(8) 1 0.834 0.834 3.97 0.0467
Deviation 467 110.650 0.236 1.12 0.1022
Pooled error 536 114.628 0.213



MTF×3(7), and MTG×10(6)] are the most important of
the 13 significant cross products (Table 5) and explained
19.3% of the GEI of biomass with 5 df.

When the multiple FR model with a stepwise proce-
dure, including the cross products among the genetic
markers and the environmental covariables, is fitted to
the data, the GEI is explained only by the term Xνν Z’ of
equation 3 (see Materials and methods). Vargas et al.
(1999) described the interpretation of the GEI interaction
in terms of the FR cross products. The G×H matrix νν
contains the regression coefficients (which can be posi-
tive or negative) of the cross products of line and envi-
ronmental variables. The I×G matrix X and the H×J ma-
trix Z’ represent the line and environmental covariables,
respectively, that have been previously centered to a
mean of zero and variance equal to 1. Therefore, positive
value of the ith line (ith row of X) for its gth covariable
(gth column of X) indicates above-average performance,
and negative value indicates below-average perfor-
mance. Similarly, a positive value of the jth site (jth col-
umn of Z) for its hth covariable (hth row of Z) indicates
an above-average performance, and negative value indi-
cates a below-average performance. Thus, depending on
the combination of signs of these three components, the
predicted interaction term Xνν Z’ can be positive or nega-
tive.

The estimated regression coefficient of the 13 cross
products were: MTG × 2(1) = –10.20; MTF × 6(5) =
–6.50; mTG × 5(3) = –5.51; MTF × 3(7) = –4.63; MTG
× 10(6) = –4.84; mTF × 1(4) = –4.31; mTF ×5(8) =
–10.25; mTF × 1(7) = –13.40; mTV × 1(7) = 7.97; MTF
× 10(9) = –3.81; mTF × 4(3) = –3.63; MTV × 9(1) =
3.71; and mTV × 5(8) = 6.07. In general, these estimates
showed that highland alleles provide adaptation to high-
land environments and that lowland alleles confer adap-
tation to lowland environments. For example, lines with
an above-average number of alleles of the highland par-
ent for marker 2(1) do not perform well in sites TL or
PR, which have an above-average MTG {[positive sign
for 2(1) in X] ×[negative sign for the regression coeffi-
cient of MTG×2(1)]×[positive sign for MTG in TL or PR
in matrix Z’]}. On the other hand, lines with a below-av-
erage number of alleles of the highland parent for marker
2(1) perform relatively well in site TL or PR, with an
above-average MTG {[negative sign for 2(1) in
X]×[negative sign for the regression coefficient of
MTV×2(1)]×[positive sign for MTV in TL or PR in ma-
trix Z’]}. Furthermore, lines with an above-average
number of alleles of the highland parent from marker
5(3) produce relatively little biomass in TL (or PR) when
higher minimum temperatures occur during the grain-
filling stage (mTG).

Two additional multiple FR analyses were performed
to compare results with those previously described. The
first model considered a reduced number of cross prod-
ucts (12 cross products) resulting from genetic markers
2(1), 6(5), 5(3) and 10(6) with environmental covari-
ables MTV, mTF and SHG (data not shown). These co-
variables were chosen based on the set of markers and

environmental covariables suggested by the previous an-
alyses and by the PLS biplots of Figs. 1 and 2. Results
indicated that cross-products MTV×2(1), MTV×6(5),
MTV×10(6), and mTF×5(3) were the only significant
cross-products that explained 15.2% of the GEI of the
biomass. The estimated regression coefficients of the
four cross-products were all negative. These results
clearly agreed with those of Jiang et al. (1999) and con-
firmed those previously found by PLS and individual
and multiple-FR. The second multiple FR model com-
prises 602 cross products obtained from all 86 markers
with seven environmental variables (MTV, MTF, MTG,
mTV, mTF, mTG and SHG) (data not shown). Nineteen
cross products, with 1 df each, were found significant
and explained 33% of the GEI. From these, the six most
important cross products were the same as the six most
important cross-products of Table 5, which employed
markers 2(1), 5(3), 6(5) and 10(6). This result clearly
agreed with those obtained previously by PLS, individu-
al and multiple FR, and those reported by Jiang et al.
(1999).

Explaining line×site interaction by fitting individual
markers to individual sites using multiple factorial
regression

The model previously used to study the site×marker in-
teraction fitted four parameters for each included marker,
with a marker effect for each environment (3 df). There
was no way to separate out the necessity of individual
marker×environment terms. A model based on individu-
al marker×environment terms is useful for determining
the intensity of expression of individual markers (QTLs)
in individual environments. Is QEI attributable to QTLs
expressing themselves in a binary way (yes/no) in indi-
vidual environments, so that different QTLs are ex-
pressed in different environments? Or, is QEI due to dif-
ferences in the intensity of expression of specific QTLs
over different environments? Or, is it a combination of
both?

With 86 markers and four sites, there are 344 possible
marker-site combinations. The regressors corresponding
to these combinations were introduced as the set of inde-
pendent variables in a multiple FR with a stepwise pro-
cedure. Table 6 showed the 32 significant marker-site
combinations included in the final model arranged by
chromosome (the order of inclusion of the terms in the
model is shown in the 6th column). Markers 2(1), 6(4),
and 5(3) were significant in two sites (but with differing
intensities); the rest were significant in only one site. Of
the 29 significant markers, 17 of them are the same as
the 30 markers determined by individual FR, and 15 are
the same as the 30 markers found by the PLS method.
The first four markers to be included were 2(1), 6(5),
5(5) and 10(6), with an intensity of expressions in the
highland site TO of 61.4, 38.7, 29.9 and 33.2 g m–2 of
biomass added per lowland allele subtituted by a high-
land allele, respectively. Markers 4(3) and 5(3) were in-
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tensively expressed in BA and TO, respectively, when
lowland alleles were substituted by highland alleles
(132.4 g m–2 and 90.6 g m–2 of biomass per higland al-
lele). On the other hand, allele substitution towards the
highland parent on marker 9(2) in BA is expressed by a
decrease in biomass of –111 g m–2 per highland allele.

Wright and Mowers (1944) and Whittaker et al.
(1997) considered the multiple regression of phenotype
trait value on marker type. The authors found that: 1)
only marker flanking a QTL have non-zero regression
coefficients of the same sign and 2) intervals with
flanking markers with regression coefficients of opposite
sign may be due to the presence of two QTLs with
opposite sign or due to the presence of a ghost QTL or
due to the presence of a QTL in adjoining intervals.

In general, results of this analysis indicate a decrease
in biomass per lowland allele substituted by a highland
allele in mid-altitude site TL and lowland site PR, but an
increase in biomass production per lowland allele substi-
tuted by a highland allele is shown in highland sites TO
and BA. However, this trend is expressed with different

intensities in different markers. These results agree with
the adaptation pattern of lines across sites and the associ-
ation of genetic markers with lines and genetic markers
with sites depicted in Fig. 1.

Conclusions

The results of this study show that PLS and FR could be
useful tools for studying genetic differentiation associat-
ed with adaptation to specific environmental conditions.
The FR model is a flexible and powerful technique that
can be easily adapted to fit different partitions of the GEI
using markers and environmental covariables disclosing
GEI and QEI response patterns that exist on a large and
complex tropical maize data set. PLS and FR identified
30 genetic marker covariables, most of them linked to
QTLs with significant QEI which, in turn, account for a
significant proportion of GEI for biomass. Based on the
loadings of the first and second PLS factors, the PLS bi-
plot showed major sets and subsets of linked markers as-
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Table 6 Analysis of variance
for stepwise multiple factorial
regressions models when fitting
individual genetic markers to
individual sites

Source df Sum of squares F Prob >F Order of Regression
×105 inclusion coefficient

Site×line 480 149.271 1.46 0.0001

1(2)-TL 1 0.923 4.32 0.0381 22 –33.4
1(5)-TL 1 1.918 8.97 0.0028 7 –35.7
1(7)-BA 1 2.652 12.40 0.0004 6 50.0
1(9)-PR 1 1.079 5.04 0.0251 30 –33.7

2(1)-TO 1 6.504 30.41 0.000 1 61.4
2(1)-TL 1 1.670 7.81 0.0053 11 –48.1
2(4)-TO 1 1.133 5.30 0.0217 28 37.0

3(7)-TO 1 0.969 4.53 0.0337 20 47.6
3(9)-TL 1 1.763 8.24 0.0042 12 –46.7

4(1)-BA 1 0.880 4.12 0.0428 24 –32.6
4(3)-BA 1 1.873 8.76 0.0032 8 132.4
4(5)-BA 1 1.915 8.95 0.0029 9 –78.5
4(8)-TO 1 0.898 4.20 0.0409 25 36.0
4(10)-TL 1 0.946 4.43 0.0357 23 30.4

5(2)-TO 1 1.377 6.44 0.0114 27 –68.7
5(3)-TO 1 0.866 4.05 0.0446 26 90.6
5(3)-BA 1 1.367 6.39 0.0117 14 55.4
5(5)-TO 1 3.539 16.55 0.0000 3 29.9
5(8)-TL 1 0.953 4.46 0.0351 21 –43.6

6(2)-TO 1 1.796 8.40 0.0039 13 39.6
6(4)-PR 1 1.825 8.53 0.0036 10 55.3
6(4)-TO 1 0.838 3.92 0.0482 32 67.4
6(5)-TO 1 5.393 25.22 0.0000 2 38.7

8(6)-BA 1 1.247 5.83 0.0160 16 –36.5

9(1)-TL 1 2.594 12.13 0.0005 5 30.7
9(2)-BA 1 1.116 5.22 0.0227 18 –111.0
9(4)-BA 1 1.007 4.71 0.0304 31 76.7
9(5)-TO 1 0.948 4.44 0.0355 29 43.9

10(3)-TL 1 1.299 6.07 0.0140 15 –61.0
10(6)-TO 1 3.227 15.09 0.0001 4 33.2
10(8)-BA 1 1.145 5.35 0.0211 19 –41.3
10(9)-TL 1 1.159 5.42 0.0202 17 –48.1
Deviation 448 92.447 0.97 0.6305

Pooled error 536 114.628 0.213



sociated which lines showing adaptation to specific envi-
ronments. Furthermore, the majority of these markers
were closely associated with QTLs detected by compos-
ite interval mapping and showed a significant QEI (Jiang
et al. 1999). The PLS biplot helps to identify a set of
lines with positive or negative interactions with specific
environments and allows us to associate these sets of
lines with particular sets of linked genetic markers.
These markers showed, for specific lines, allele substitu-
tions that favored the environment of their origin. Low-
land alleles showed a bit broader adaptation than high-
land alleles, a finding that is consistent with the experi-
ence of CIMMYT breeders who found that, generally,
highland germplasm is narrowly adapted (Eagles and
Lothrop 1994).

Assuming that a particular allele composition of ge-
netic markers is associated with a specific allele composi-
tion at the linked QTL, the different alleles of markers as-
sociated with lines having a positive or negative interac-
tion with environments should be related to specific al-
leles at the linked QTL, which in turn results in specific
genetic adaptation of those lines to those environments.
Results showed a negative association between maximum
temperatures and markers 2(1), 6(5), and 10(6) (negative
regression coefficient for their cross products), indicating
that high maximum temperatures, such as those occurring
at TL and PR, negatively influenced the expression of
QTLs associated with markers 2(1), 6(5), and 10(6) when
these markers had a greater number of alleles from the
highland parent. However, higher maximum temperatures
positively influenced the expression of QTLs associated
with those markers when they had a greater frequency of
alleles from the lowland parent. High minimum tempera-
ture, the other environmental variable that has been iden-
tified as important, seems to positively affect QTLs asso-
ciated with marker 5(3) when this marker has more al-
leles from the lowland parent, but has negative effects
when it has more alleles from the highland parent. Thus,
QTLs associated with markers 2(1), 6(5) and 10(6) are
sensitive to maximum temperature, whereas QTLs asso-
ciated with marker 5(3) are sensitive to minimum temper-
ature. These results were in agreement with the QTL
mapping study of Jiang et al. (1999) who found (in terms
of the additive effects) a significant QTL: (1) on chromo-
some 2 [around genetic markers 2(1) and 2(2)] for bio-
mass in TL in favor of the alleles from the lowland parent
and in TO in favor of alleles from the highland parent,
and (2) at the end region of chromosome 10 [around ge-
netic markers 10(6) and 10(9)] for biomass in favor of
lowland alleles.

Results from PLS and FR indicate the effect of genet-
ic markers linked to important QTLs for adaptation to a
site change with temperature. Additive effects of allelic
substitution towards lowland alleles seem to provide a
broader range of adaptation, within moderate ranges of
temperature (lowland site PR and mid-altitude site TL),
than those provided by allelic substitution in favor of
highland alleles. Introducing lowland alleles into high-
land germplasm from chromosome regions such as those

around markers 2(1)-2(2), 5(3)-5(4), 6(5)-6(6) and 10(6)-
10(9) should make highland germplasm better adapted to
a wider range of temperatures without losing other as-
pects of specific adaptation to highland environments.
This strategy can be most efficiently carried out using a
marker-assisted backcrossing breeding scheme.

In general, the results of this study do not contradict
the findings of Ellis et al. (1992) and Lafitte et al.
(1997) that adaptation differences between highland and
lowland tropical maize germplasm are mainly due to
differences in growth and development processes in-
duced by temperature (i.e., cold temperatures in high-
land environments and warm temperatures in lowland
environments). Adaptation to different temperatures in
low-, mid- and high-altitude environments is (at least in
part) the result of long-term natural and artificial selec-
tion with allelic substitution occurring at several loci.
PLS and individual and multiple FR explained sizeable
proportions of the GEI and led to meaningful biological
interpretations.
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