54 research outputs found

    The Draw-A-Clock Contest: A Strategy for Improving Cognitive Status Assessment by Trainees

    Get PDF
    Background: Historically, psychiatrists have been less inclined than neurologists to utilize pencil and paper tasks during bedside cognitive assessments. Objective: The Draw-AClock Contest was established in 1986 at the University of Massachusetts to promote use of cognitive assessment tasks by psychiatry residents. Methods: Used in neuropsychological assessments since the 1930’s, clock tasks have been popular screening tools for executive function, praxis, visuospatial and constructive ability, often as part of dementia screening. Given its broad utility as a screening tool and the ease and speed of its administration, the Draw-A-Clock task (with hands set to 11:10 and no circle provided) was selected for use by UMass psychiatry residents, with further bedside assessment encouraged to explore any detected deficits. To encourage participation and foster clinical inquiry, residents are asked to submit clinically interesting de-identified patient clocks. For 21 years, clock contest entries have been collected each spring, with basic demographic, diagnostic, and process notes. Resident names are encoded, and entries are judged by a neuropsychiatrist (SB) and a neuropsychologist (EK). A “clock trophy” and detailed analysis of the submission is presented to the winner at the annual graduation banquet. Results: As a result of this contest, mental status examinations by trainees have become more comprehensive and an atmosphere of neuropsychiatric inquiry has been maintained. Faculty members have also incorporated this task into their mental status assessments, thus establishing a culture of cognitive inquiry and an academic tradition. Examples of winning clocks and common findings will be presented. Published abstract: Sullivan J, Benjamin S, Case Report: CADASIL with Cysteine-Sparing Notch-3 Mutation, American Neuropsychiatric Association, abstract, Journal of Neuropsychiatry and Clinical Neuroscience 21(2):221, 2009. DOI 10.1176/appi.neuropsych.21.2.221

    Eight previously unidentified mutations found in the OA1 ocular albinism gene

    Get PDF
    BACKGROUND: Ocular albinism type 1 (OA1) is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. METHODS: The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. RESULTS: We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. CONCLUSION: The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand

    Imidazol-1-ylethylindazole Voltage-Gated Sodium Channel Ligands Are Neuroprotective during Optic Neuritis in a Mouse Model of Multiple Sclerosis

    Get PDF
    [Image: see text] A series of imidazol-1-ylethylindazole sodium channel ligands were developed and optimized for sodium channel inhibition and in vitro neuroprotective activity. The molecules exhibited displacement of a radiolabeled sodium channel ligand and selectivity for blockade of the inactivated state of cloned neuronal Na(v) channels. Metabolically stable analogue 6 was able to protect retinal ganglion cells during optic neuritis in a mouse model of multiple sclerosis

    Identification of NAD(P)H Quinone Oxidoreductase Activity in Azoreductases from P. aeruginosa: Azoreductases and NAD(P)H Quinone Oxidoreductases Belong to the Same FMN-Dependent Superfamily of Enzymes

    Get PDF
    Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(P)H quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(P)H quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions

    Fine-mapping analysis including over 254,000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore