43 research outputs found

    A valley-spin qubit in a carbon nanotube

    Full text link
    Although electron spins in III-V semiconductor quantum dots have shown great promise as qubits, a major challenge is the unavoidable hyperfine decoherence in these materials. In group IV semiconductors, the dominant nuclear species are spinless, allowing for qubit coherence times that have been extended up to seconds in diamond and silicon. Carbon nanotubes are a particularly attractive host material, because the spin-orbit interaction with the valley degree of freedom allows for electrical manipulation of the qubit. In this work, we realise such a qubit in a nanotube double quantum dot. The qubit is encoded in two valley-spin states, with coherent manipulation via electrically driven spin resonance (EDSR) mediated by a bend in the nanotube. Readout is performed by measuring the current in Pauli blockade. Arbitrary qubit rotations are demonstrated, and the coherence time is measured via Hahn echo. Although the measured decoherence time is only 65 ns in our current device, this work offers the possibility of creating a qubit for which hyperfine interaction can be virtually eliminated

    A new rhynchocephalian from the late jurassic of Germany with a dentition that is unique amongst tetrapods.

    Get PDF
    Rhynchocephalians, the sister group of squamates (lizards and snakes), are only represented by the single genus Sphenodon today. This taxon is often considered to represent a very conservative lineage. However, rhynchocephalians were common during the late Triassic to latest Jurassic periods, but rapidly declined afterwards, which is generally attributed to their supposedly adaptive inferiority to squamates and/or Mesozoic mammals, which radiated at that time. New finds of Mesozoic rhynchocephalians can thus provide important new information on the evolutionary history of the group. A new fossil relative of Sphenodon from the latest Jurassic of southern Germany, Oenosaurus muehlheimensis gen. et sp. nov., presents a dentition that is unique amongst tetrapods. The dentition of this taxon consists of massive, continuously growing tooth plates, probably indicating a crushing dentition, thus representing a previously unknown trophic adaptation in rhynchocephalians. The evolution of the extraordinary dentition of Oenosaurus from the already highly specialized Zahnanlage generally present in derived rhynchocephalians demonstrates an unexpected evolutionary plasticity of these animals. Together with other lines of evidence, this seriously casts doubts on the assumption that rhynchocephalians are a conservative and adaptively inferior lineage. Furthermore, the new taxon underlines the high morphological and ecological diversity of rhynchocephalians in the latest Jurassic of Europe, just before the decline of this lineage on this continent. Thus, selection pressure by radiating squamates or Mesozoic mammals alone might not be sufficient to explain the demise of the clade in the Late Mesozoic, and climate change in the course of the fragmentation of the supercontinent of Pangaea might have played a major role

    Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes

    Get PDF
    Fibroblastic reticular cells (FRCs) and lymphatic endothelial cells (LECs) are nonhematopoietic stromal cells of lymphoid organs. They influence the migration and homeostasis of naive T cells; however, their influence on activated T cells remains undescribed. Here we report that FRCs and LECs inhibited T cell proliferation through a tightly regulated mechanism dependent on nitric oxide synthase 2 (NOS2). Expression of NOS2 and production of nitric oxide paralleled the activation of T cells and required a tripartite synergism of interferon-γ, tumor necrosis factor and direct contact with activated T cells. Notably, in vivo expression of NOS2 by FRCs and LECs regulated the size of the activated T cell pool. Our study elucidates an as-yet-unrecognized role for the lymph node stromal niche in controlling T cell responses

    An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells.

    Get PDF
    In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer's patches, small areas of the intestine concentrated with particle-scavenging immune cells. In wild-type mice, intestinal immune cells containing these naturally formed nanoparticles expressed the immune tolerance-associated molecule 'programmed death-ligand 1', whereas in NOD1/2 double knockout mice, which cannot recognize peptidoglycan, programmed death-ligand 1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and show how this helps to shape intestinal immune homeostasis

    MASS LOSS FROM THE PROGENITOR OF SN 1006?

    No full text
    RESUMEN Se observó el remanente de la SN 1006 a 1.4 GHz con alta resolución y sensibilidad. Estos datos se combinaron con observaciones anteriores con el fin de medir la expansión de la cáscara. Se encontró que el parámetro de expansión δ, definido como R ∝ t δ , vale ∼ 0.62 para los lóbulos brillantes. De acuerdo con modelos teóricos, este valor significaría que la materia expulsada está interactuando con una distribución de densidad circunestelar que decrece como r −2 , la cual se explica si hubo una pérdida de masa continua antes de la explosión. Sin embargo,éste podría no ser el caso si SN 1006 aún se encuentra en la etapa evolutiva donde la masa estelar expulsada supera a la masa interestelar barrida. ABSTRACT We have observed the remnant of SN 1006 with high resolution and sensitivity at 1.4 GHz. These data are combined with observations performed 11 years before to measure the expansion of the radio shell. The expansion parameter δ, defined as R ∝ t δ , is found to be ∼ 0.62 for the brightest lobes. According to theoretical models, this value appears to be compatible with ejecta interacting with a circumstellar density profile decreasing as r −2 , characteristic of steady presupernova mass loss. However, this could not be the case if SN 1006 is still in the ejecta-dominated evolutionary stage

    Beneficial effects montelukast, cysteinyl-leukotriene receptor antagonist, on renal damage after unilateral ureteral obstruction in rats

    Get PDF
    WOS: 000354634500014PubMed ID: 26005969Introduction: Ureteral obstruction is a common pathology and caused kidney fibrosis and dysfunction at late period. In this present, we investigated the antifibrotic and antiinflammatory effects of montelukast which is cysteinyl leukotriene receptor antagonist, on kidney damage after unilateral ureteral obstruction(UUO) in rats. Materials and Methods: 32 rats divided four groups. Group 1 was control, group 2 was sham, group 3 was rats with UUO and group 4 was rats with UUO which were given montelukast sodium (oral 10 mg/kg/day). After 14 days, rats were killed and their kidneys were taken and blood analysis was performed. Tubular necrosis, mononuclear cell infiltration and interstitial fibrosis scoring were determined histopathologically in a part of kidneys; nitric oxide(NO), malondialdehyde(MDA) and reduced glutathione(GSH) levels were determined in the other part of kidneys. Urea-creatinine levels were investigated at blood analysis. Statistical analyses were made by the Chi-square test and one-way analysis of variance (ANOVA). Results: There was no difference significantly for urea-creatinine levels between groups. Pathologically, there was serious tubular necrosis and fibrosis in group 3 and there was significantly decreasing for tubular necrosis and fibrosis in group 4(p<0.005). Also, there was significantly increasing for NO and MDA levels; decreasing for GSH levels in group 3 compared the other groups(p<0.005). Conclusion: We can say that montelukast prevent kidney damage with antioxidant effect, independently of NO
    corecore