42 research outputs found

    Marine optical characterizations

    Get PDF
    During the past three months, the MOCE Team conducted two field experiments in Mill Creek,Chesapeake Bay, from July 24 to August 4, and at the MOBY operations site at Snug Harbor, Honolulu, Hawaii, from August 15-30, prepared two technical memoranda, and continued MOCE-2 and MOCE-3 data reduction. The primary purposes of the experiments were to test the SeaWiFS 'remote sensing reflectance' protocol, obtain turbid water data for ocean color satellite algorithm development, perform calibration for both Near Infrared (NIR) and Visible Rainbow Spectrometer system, continue assembling the operational Marine Optical Buoy, and to test the MOBY cellular phone communications link at the Lanai mooring site

    From Data to Causes II: Comparing Approaches to Panel Data Analysis

    Get PDF
    This article compares a general cross-lagged model (GCLM) to other panel data methods based on their coherence with a causal logic and pragmatic concerns regarding modeled dynamics and hypothesis testing. We examine three “static” models that do not incorporate temporal dynamics: random- and fixed-effects models that estimate contemporaneous relationships; and latent curve models. We then describe “dynamic” models that incorporate temporal dynamics in the form of lagged effects: cross-lagged models estimated in a structural equation model (SEM) or multilevel model (MLM) framework; Arellano-Bond dynamic panel data methods; and autoregressive latent trajectory models. We describe the implications of overlooking temporal dynamics in static models and show how even popular cross-lagged models fail to control for stable factors over time. We also show that Arellano-Bond and autoregressive latent trajectory models have various shortcomings. By contrasting these approaches, we clarify the benefits and drawbacks of common methods for modeling panel data, including the GCLM approach we propose. We conclude with a discussion of issues regarding causal inference, including difficulties in separating different types of time-invariant and time-varying effects over time

    A systematic review of longitudinal studies on the association between depression and smoking in adolescents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well-established that smoking and depression are associated in adolescents, but the temporal ordering of the association is subject to debate.</p> <p>Methods</p> <p>Longitudinal studies in English language which reported the onset of smoking on depression in non clinical populations (age 13-19) published between January 1990 and July 2008 were selected from PubMed, OVID, and PsychInfo databases. Study characteristics were extracted. Meta-analytic pooling procedures with random effects were used.</p> <p>Results</p> <p>Fifteen studies were retained for analysis. The pooled estimate for smoking predicting depression in 6 studies was 1.73 (95% CI: 1.32, 2.40; p < 0.001). The pooled estimate for depression predicting smoking in 12 studies was 1.41 (95% CI: 1.21, 1.63; p < 0.001). Studies that used clinical measures of depression were more likely to report a bidirectional effect, with a stronger effect of depression predicting smoking.</p> <p>Conclusion</p> <p>Evidence from longitudinal studies suggests that the association between smoking and depression is bidirectional. To better estimate these effects, future research should consider the potential utility of: (a) shorter intervals between surveys with longer follow-up time, (b) more accurate measurement of depression, and (c) adequate control of confounding.</p

    Efficacy and safety of alirocumab in reducing lipids and cardiovascular events.

    Get PDF

    Optical response of silver clusters and their hollow shells from linear-response TDDFT

    Get PDF
    We present a study of the optical response of compact and hollow icosahedral clusters containing up to 868 silver atoms by means of time-dependent density functional theory. We have studied the dependence on size and morphology of both the sharp plasmonic resonance at 3-4 eV (originated mainly from spsp-electrons), and the less studied broader feature appearing in the 6-7 eV range (interband transitions). An analysis of the effect of structural relaxations, as well as the choice of exchange correlation functional (local density versus generalized gradient approximations) both in the ground state and optical response calculations is also presented. We have further analysed the role of the different atom layers (surface versus inner layers) and the different orbital symmetries on the absorption cross-section for energies up to 8 eV. We have also studied the dependence on the number of atom layers in hollow structures. Shells formed by a single layer of atoms show a pronounced red shift of the main plasmon resonances that, however, rapidly converge to those of the compact structures as the number of layers is increased. The methods used to obtain these results are also carefully discussed. Our methodology is based on the use of localized basis (atomic orbitals, and atom-centered- and dominant- product functions), which bring several computational advantages related to their relatively small size and the sparsity of the resulting matrices. Furthermore, the use of basis sets of atomic orbitals also brings the possibility to extend some of the standard population analysis tools (e.g., Mulliken population analysis) to the realm of optical excitations. Some examples of these analyses are described in the present work.Prédiction par calcul numérique intensif du potentiel à circuit ouvert au sein de cellules photovoltaïques organiques
    corecore