431 research outputs found
Limits on Neutrino Radiative Decay from Sn1987a
We calculate limits on the properties of neutrinos using data from gamma-ray
detectors on the Pioneer Venus Orbiter and Solar Max Mission satellites. A
massive neutrino decaying in flight from the supernova would produce gamma rays
detectable by these instruments. The lack of such a signal allows us to
constrain the mass, radiative lifetime, and branching ratio to photons of a
massive neutrino species produced in the supernova. Presented at Beyond The
Standard Model III, June, 1992.Comment: 5 Pages, 2 Figures (avalable on request). LaTeX, WorldSci.st
Branding the nation: Towards a better understanding
This paper aims to clarify some misunderstanding about nation branding. It examines the origins and interpretations of the concept, and draws a comparison between nation branding and commercial branding. A new definition is offered that emphasises the need to shift from “branding” the nation to nation image management
Dynamical Casimir Effect with Semi-Transparent Mirrors, and Cosmology
After reviewing some essential features of the Casimir effect and,
specifically, of its regularization by zeta function and Hadamard methods, we
consider the dynamical Casimir effect (or Fulling-Davis theory), where related
regularization problems appear, with a view to an experimental verification of
this theory. We finish with a discussion of the possible contribution of vacuum
fluctuations to dark energy, in a Casimir like fashion, that might involve the
dynamical version.Comment: 11 pages, Talk given in the Workshop ``Quantum Field Theory under the
Influence of External Conditions (QFEXT07)'', Leipzig (Germany), September 17
- 21, 200
Cosmic-ray strangelets in the Earth's atmosphere
If strange quark matter is stable in small lumps, we expect to find such
lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays.
Following recent astrophysical models, we predict the strangelet flux at the
top of the atmosphere, and trace the strangelets' behavior in atmospheric
chemistry and circulation. We show that several strangelet species may have
large abundances in the atmosphere; that they should respond favorably to
laboratory-scale preconcentration techniques; and that they present promising
targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex
Exploring the Partonic Structure of Hadrons through the Drell-Yan Process
The Drell-Yan process is a standard tool for probing the partonic structure
of hadrons. Since the process proceeds through a quark-antiquark annihilation,
Drell-Yan scattering possesses a unique ability to selectively probe sea
distributions. This review examines the application of Drell-Yan scattering to
elucidating the flavor asymmetry of the nucleon's sea and nuclear modifications
to the sea quark distributions in unpolarized scattering. Polarized beams and
targets add an exciting new dimension to Drell-Yan scattering. In particular,
the two initial-state hadrons give Drell-Yan sensitivity to chirally-odd
transversity distributions.Comment: 23 pages, 9 figures, to appear in J. Phys. G, resubmission corrects
typographical error
A Novel Mode of Action for a Microbial-Derived Immunotoxin: The Cytolethal Distending Toxin Subunit B Exhibits Phosphatidylinositol 3,4,5-Triphosphate Phosphatase Activity
The Actinobacillus actinomycetemcomitans cytolethal distending toxin (Cdt) is a potent immunotoxin that induces G2 arrest in human lymphocytes. We now show that the CdtB subunit exhibits phosphatidylinositol (PI)-3,4,5-triphosphate phosphatase activity. Breakdown product analysis indicates that CdtB hydrolyzes PI-3,4,5-P3 to PI-3,4-P2 and therefore functions in a manner similar to phosphatidylinositol 5-phosphatases. Conserved amino acids critical to catalysis in this family of enzymes were mutated in the cdtB gene. The mutant proteins exhibit reduced phosphatase activity along with decreased ability to induce G2 arrest. Consistent with this activity, Cdt induces time-dependent reduction of PI-3,4,5-P3 in Jurkat cells. Lymphoid cells with defects in SHIP1 and/or ptase and tensin homolog deleted on chromosome 10 (PTEN) (such as Jurkat, CEM, Molt) and, concomitantly, elevated PI-3,4,5-P3 levels were more sensitive to the toxin than HUT78 cells which contain functional levels of both enzymes and low levels of PI-3,4,5-P3. Finally, reduction of Jurkat cell PI-3,4,5-P3 synthesis using the PI3K inhibitors, wortmannin and LY290004, protects cells from toxin-induced cell cycle arrest. Collectively, these studies show that the CdtB not only exhibits PI-3,4,5-P3 phosphatase activity, but also that toxicity in lymphocytes is related to this activity. Copyright © 2007 by The American Association of Immunologists, Inc
Detecting eccentric supermassive black hole binaries with pulsar timing arrays: Resolvable source strategies
The couplings between supermassive black-hole binaries and their environments
within galactic nuclei have been well studied as part of the search for
solutions to the final parsec problem. The scattering of stars by the binary or
the interaction with a circumbinary disk may efficiently drive the system to
sub-parsec separations, allowing the binary to enter a regime where the
emission of gravitational waves can drive it to merger within a Hubble time.
However, these interactions can also affect the orbital parameters of the
binary. In particular, they may drive an increase in binary eccentricity which
survives until the system's gravitational-wave signal enters the pulsar-timing
array band. Therefore, if we can measure the eccentricity from observed
signals, we can potentially deduce some of the properties of the binary
environment. To this end, we build on previous techniques to present a general
Bayesian pipeline with which we can detect and estimate the parameters of an
eccentric supermassive black-hole binary system with pulsar-timing arrays.
Additionally, we generalize the pulsar-timing array -statistic
to eccentric systems, and show that both this statistic and the Bayesian
pipeline are robust when studying circular or arbitrarily eccentric systems. We
explore how eccentricity influences the detection prospects of single
gravitational-wave sources, as well as the detection penalty incurred by
employing a circular waveform template to search for eccentric signals, and
conclude by identifying important avenues for future study.Comment: 15 pages, 13 figures, 1 table. Accepted for publication in ApJ. New
results on expected binary measurement precisions as a function of
signal-to-noise (Fig 9
Extragalactic Peaked-Spectrum Radio Sources at Low Frequencies
This document is the Accepted Manuscript of the following article: J.R. Callingham, et al, 'Extragalactic Peaked-Spectrum Radio Sources at Low Frequencies', The Astrophysical Journal, 836 (2), (28pp), first published online 17 February 2017. DOI: https://doi.org/10.3847/1538-4357-836/2/174. © 2017, The American Astronomical Society. All rights reserved. Data tables, and the appendix containing all of the SEDs, are available from the journal and on request to the authorWe present a sample of 1,483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low frequency analogues of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and demonstrate the possibility of identifying high redshift () galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.Peer reviewedFinal Accepted Versio
Targeting cancer metabolism: a therapeutic window opens
Genetic events in cancer activate signalling pathways that alter cell metabolism. Clinical evidence has linked cell metabolism with cancer outcomes. Together, these observations have raised interest in targeting metabolic enzymes for cancer therapy, but they have also raised concerns that these therapies would have unacceptable effects on normal cells. However, some of the first cancer therapies that were developed target the specific metabolic needs of cancer cells and remain effective agents in the clinic today. Research into how changes in cell metabolism promote tumour growth has accelerated in recent years. This has refocused efforts to target metabolic dependencies of cancer cells as a selective anticancer strategy.Burroughs Wellcome FundSmith Family FoundationStarr Cancer ConsortiumDamon Runyon Cancer Research FoundationNational Institutes of Health (U.S.
The Herschel-SPIRE Legacy Survey (HSLS): the scientific goals of a shallow and wide submillimeter imaging survey with SPIRE
A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs
- …
