693 research outputs found

    Gamma-ray Bursts, Classified Physically

    Full text link
    From Galactic binary sources, to extragalactic magnetized neutron stars, to long-duration GRBs without associated supernovae, the types of sources we now believe capable of producing bursts of gamma-rays continues to grow apace. With this emergent diversity comes the recognition that the traditional (and newly formulated) high-energy observables used for identifying sub-classes does not provide an adequate one-to-one mapping to progenitors. The popular classification of some > 100 sec duration GRBs as ``short bursts'' is not only an unpalatable retronym and syntactically oxymoronic but highlights the difficultly of using what was once a purely phenomenological classification to encode our understanding of the physics that gives rise to the events. Here we propose a physically based classification scheme designed to coexist with the phenomenological system already in place and argue for its utility and necessity.Comment: 6 pages, 3 figures. Slightly expanded version of solicited paper to be published in the Proceedings of ''Gamma Ray Bursts 2007,'' Santa Fe, New Mexico, November 5-9. Edited by E. E. Fenimore, M. Galassi, D. Palme

    Resolving The ISM Surrounding GRBs with Afterglow Spectroscopy

    Full text link
    We review current research related to spectroscopy of gamma-ray burst (GRB) afterglows with particular emphasis on the interstellar medium (ISM) of the galaxies hosting these high redshift events. These studies reveal the physical conditions of star-forming galaxies and yield clues to the nature of the GRB progenitor. We offer a pedagogical review of the experimental design and review current results. The majority of sightlines are characterized by large HI column densities, negligible molecular fraction, the ubiquitous detection of UV pumped fine-structure transitions, and metallicities ranging from 1/100 to nearly solar abundance.Comment: Conference procedings for Gamma Ray Bursts 2007 November 5-9, 2007 Santa Fe, New Mexico (8 pages, 4 figures

    Battery Calendar Life Estimator Manual Modeling and Simulation

    Get PDF
    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing

    The Ursinus Weekly, April 9, 1962

    Get PDF
    Junior class goes Parisian for Sunnybrook event Friday • Wurster elected YMCA president • Dr. Helfferich elected as UCC educators treasurer • Coeds tap Taney, Hartzell, Andrews for prexy posts • Pre-medicals hear Hahneman\u27s Bondi on chemotherapy • Sophomores slate weekend wingding • Thousands visit science fair at Ursinus College • Forum to present Sokoloffs in piano recital Wednesday • Pi Nu will sponsor music month here • Weekly banquet is Swint\u27s swansong • Moll announces MSGA now accepting petitions for 1962 membership • Editorial: A matter of policy; Is it worth it, men? • Letters to the editor • Next war praised; Bravo for Mackey • Meistersinger reports progress of New England tour via phone call • Conservative coed goes Dixie-way • Fighting Shaner leads Siebmen in sloppy 11-7 victory over Dickinson • Cindermen drop practice meet to Lehighers, 64 to 54 • Intramural corner • Dryfoos named outstanding player by coaches of MAC college division • Snyder places second in chess tournament • Greek gleanings • Miss Pennsylvania betroths UC grad • Final student concert spots Prokofieff work • Graduate grantshttps://digitalcommons.ursinus.edu/weekly/1316/thumbnail.jp

    Mechanisms of force generation by end-on kinetochore-microtubule attachments

    Get PDF
    Generation of motile force is one of the main functions of the eukaryotic kinetochore during cell division. In recent years, the KMN network of proteins (Ndc80 complex, Mis12 complex and KNL-1 complex) has emerged as a highly conserved core microtubule-binding complex at the kinetochore. It plays a major role in coupling force generation to microtubule plus-end polymerization and depolymerization. In this review, we discuss current theoretical mechanisms of force generation, and then focus on emerging information about mechanistic contributions from the Ndc80 complex in eukaryotes, and the microtubule-binding Dam1/DASH complex from fungi. New information has also become available from super-resolution light microscopy on the protein architecture of the kinetochore-microtubule attachment site in both budding yeast and humans, which provides further insight into the mechanism of force generation. We briefly discuss potential contributions of motors, other microtubule-associated proteins, and microtubule depolymerases. Using the above evidence, we present speculative models of force generation at the kinetochore

    Budget 2017: experts respond

    Get PDF
    First paragraph: The UK chancellor of the exchequer, Philip Hammond, has delivered a budget which offered help to first-time home buyers and the prospect of more money for workers in the National Health Service, but his speech was partly overshadowed by sharpcuts to GDP growth forecastsfrom the Office of Budget Responsibility (OBR). Our team of academics deliver their verdict on the measures introduced and opportunities missed

    Radiation Test Results for a MEMS Microshutter Operating at 60 K

    Get PDF
    The James Webb Space Telescope (JWST), the successor to the Hubble Space Telescope, is due to be launched in 2013 with the goal of searching the very distant Universe for stars that formed shortly after the Big Bang. Because this occurred so far back in time, the available light is strongly red-shifted, requiring the use of detectors sensitive to the infrared portion of the electromagnetic spectrum. HgCdTe infrared focal plane arrays, cooled to below 30 K to minimize noise, will be used to detect the faint signals. One of the instruments on JWST is the Near Infrared Spectrometer (NIRSPEC) designed to measure the infrared spectra of up to 100 separate galaxies simultaneously. A key component in NIRSPEC is a Micro-Electromechanical System (MEMS), a two-dimensional micro-shutter array (MSA) developed by NASA/GSFC. The MSA is inserted in front of the detector to allow only the light from the galaxies of interest to reach the detector and to block the light from all other sources. The MSA will have to operate at 30 K to minimize the amount of thermal radiation emitted by the optical components from reaching the detector array. It will also have to operate in the space radiation environment that is dominated by the MSA will be exposed to a large total ionizing dose of approximately 200 krad(Si). Following exposure to ionizing radiation, a variety of MEMS have exhibited performance degradation. MEMS contain moving parts that are either controlled or sensed by changes in electric fields. Radiation degradation can be expected for those devices where there is an electric field applied across an insulating layer that is part of the sensing or controlling structure. Ionizing radiation will liberate charge (electrons and holes) in the insulating layers, some of which may be trapped within the insulating layer. Trapped charge will partially cancel the externally applied electric field and lead to changes in the operation of the MEMS. This appears to be a general principle for MEMS. Knowledge of the above principle has raised the concern at NASA that the MSA might also exhibit degraded performance because, i) each shutter flap is a multilayer structure consisting of metallic and insulating layers and ii) the movement of the shutter flaps is partially controlled by the application of an electric field between the shutter flap and the substrate (vertical support grid). The whole mission would be compromised if radiation exposure were to prevent the shutters from opening and closing properly. energetic ionizing particles. Because it is located A unique feature of the MSA is that, as outside the spacecraft and has very little shielding, previously mentioned, it will have to operate at temperatures near 30 K. To date, there are no published reports on how very low temperatures (- 30K) affect the response of MEMS devices to total ionizing dose. Experiments on SiO2 structures at low temperatures (80 K) indicate that the electrons generated by the ionizing radiation are mobile and will move rapidly under the application of an external electric field. Holes, on the other hand, that would normally move in the opposite direction through the SiO2 via a "thermal hopping" process, are effectively immobile at low electric fields as they are trapped close to their generation sites. However, for sufficiently large electric fields (greater than 3 MV/cm) holes are able to move through the SiO2. The larger the field, the more rapidly the holes move. The separation of the electrons and holes leads to a reduced electric field within the insulating layer. To overcome this reduction in electric field, a greater external voltage will have to be applied that alters the normal operation of the device. This report presents the results of radiation testing of the MSA at 60 K. The temperature was higher than the targeted temperature because of a faulty electrical interconnect on the test board. Specifically, our goal was to determine whether the MSA would function propey after a TID of 200 krad(Si)

    Fast response electromagnetic follow-ups from low latency GW triggers

    Get PDF
    © Published under licence by IOP Publishing Ltd. We investigate joint low-latency gravitational wave (GW) detection and prompt electromagnetic (EM) follow-up observations of coalescing binary neutron stars (BNSs). Assuming that BNS mergers are associated with short duration gamma ray bursts (SGRBs), we evaluate if rapid EM follow-ups can capture the prompt emission, early engine activity or reveal any potential by-products such as magnetars or fast radio bursts. To examine the expected performance of extreme low-latency search pipelines, we simulate a population of coalescing BNSs and use these to estimate the detectability and localisation efficiency at different times before merger. Using observational SGRB flux data corrected to the range of the advanced GW interferometric detectors, we determine what EM observations could be achieved from low-frequency radio up to high energy ?-ray. We show that while challenging, breakthrough multi-messenger science is possible through low latency pipelines
    • …
    corecore