48 research outputs found

    Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis

    Get PDF
    Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goat grass species Aegilops sharonesis (Sharon goatgrass) as a substantial reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (one of the Ug99 lineage races), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors

    Races of Puccinia graminis

    No full text

    Races of Puccinia graminis

    No full text

    High and low pre-inoculation temperatures decrease the effectiveness of the Lr20 and Sr15 rust resistance genes in wheat

    Get PDF
    Spring wheat seedlings containing Lr 20 and Sr 15 resistance alleles were raised at 30° C, prior to inoculation with leaf rust (Puccinia recondita race 76–2,3) and stem rust (Puccinia graminis f.sp, tritici race 343–1,2,3,5,6) pathogens, respectively. Infected plants were then grown at one of seven temperatures in the range 18–30 C and infection types were scored at 10 days post-inoculation. These results were compared with those obtained for plants raised at a pre-inoculation temperature of 18° C. In both 18° C and 30° C pre-grown plants, a progressive increase in infection type was observed on resistant lines as post-inoculation temperature increased. However, resistant lines raised at 30°C had significantly higher infection types than plants raised at 18° C at all post-inoculation temperatures for which some degree of resistance was still evident in the plants raised at 18°C, The maximum temperature for expression of resistance was significantly higher for Lr 20 than for Sr 15. irrespective of pre-inoculation temperature. A lowering of the resistance expression was also evident in Sr 15-bearing lines raised at a very low pre-inoculation temperature (4°C). The effects of low pre-inoculation temperature on resistance were assessed in both winter and spring wheat lines. These results are discussed in the light of current ideas concerning the host membrane location of pathogen recognition events
    corecore