24 research outputs found

    Does Presentation Format Influence Visual Size Discrimination in Tufted Capuchin Monkeys (Sapajus spp.)?

    Get PDF
    Most experimental paradigms to study visual cognition in humans and non-human species are based on discrimination tasks involving the choice between two or more visual stimuli. To this end, different types of stimuli and procedures for stimuli presentation are used, which highlights the necessity to compare data obtained with different methods. The present study assessed whether, and to what extent, capuchin monkeys\u27 ability to solve a size discrimination problem is influenced by the type of procedure used to present the problem. Capuchins\u27 ability to generalise knowledge across different tasks was also evaluated. We trained eight adult tufted capuchin monkeys to select the larger of two stimuli of the same shape and different sizes by using pairs of food items (Experiment 1), computer images (Experiment 1) and objects (Experiment 2). Our results indicated that monkeys achieved the learning criterion faster with food stimuli compared to both images and objects. They also required consistently fewer trials with objects than with images. Moreover, female capuchins had higher levels of acquisition accuracy with food stimuli than with images. Finally, capuchins did not immediately transfer the solution of the problem acquired in one task condition to the other conditions. Overall, these findings suggest that - even in relatively simple visual discrimination problems where a single perceptual dimension (i.e., size) has to be judged - learning speed strongly depends on the mode of presentation

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems

    A horse's eye view: size and shape discrimination compared with other mammals.

    Get PDF
    ウマの目からの眺め:ウマ、イルカ、チンパンジー、ヒトにおける図形知覚の比較. 京都大学プレスリリース. 2015-11-26.Mammals have adapted to a variety of natural environments from underwater to aerial and these different adaptations have affected their specific perceptive and cognitive abilities. This study used a computer-controlled touchscreen system to examine the visual discrimination abilities of horses, particularly regarding size and shape, and compared the results with those from chimpanzee, human and dolphin studies. Horses were able to discriminate a difference of 14% in circle size but showed worse discrimination thresholds than chimpanzees and humans; these differences cannot be explained by visual acuity. Furthermore, the present findings indicate that all species use length cues rather than area cues to discriminate size. In terms of shape discrimination, horses exhibited perceptual similarities among shapes with curvatures, vertical/horizontal lines and diagonal lines, and the relative contributions of each feature to perceptual similarity in horses differed from those for chimpanzees, humans and dolphins. Horses pay more attention to local components than to global shapes

    Visual laterality in the domestic horse (Equus caballus) interacting with humans

    Get PDF
    Most horses have a side on which they are easier to handle and a direction they favour when working on a circle, and recent studies have suggested a correlation between emotion and visual laterality when horses observe inanimate objects. As such lateralisation could provide important clues regarding the horse’s cognitive processes, we investigated whether horses also show laterality in association with people. We gave horses the choice of entering a chute to left or right, with and without the passive, non-interactive presence of a person unknown to them. The left eye was preferred for scanning under both conditions, but significantly more so when a person was present. Traditionally, riders handle horses only from the left, so we repeated the experiment with horses specifically trained on both sides. Again, there was a consistent preference for left eye scanning in the presence of a person, whether known to the horses or not. We also examined horses interacting with a person, using both traditionally and bilaterally trained horses. Both groups showed left eye preference for viewing the person, regardless of training and test procedure. For those horses tested under both passive and interactive conditions, the left eye was preferred significantly more during interaction. We suggest that most horses prefer to use their left eye for assessment and evaluation, and that there is an emotional aspect to the choice which may be positive or negative, depending on the circumstances. We believe these results have important practical implications and that emotional laterality should be taken into account in training methods
    corecore