13 research outputs found

    Tribological properties of liquid milks and dairy fat structured products

    No full text
    Milk lipids exist naturally in bovine and other animal milk, and they play an important role in the chemical & physical properties, sensory characteristics, including nutritional profile of dairy products. In order to understand food texture and sensory behaviour of dairy products especially those in liquid and semi-solid form, the tribometer has attracted a lot of interest since it provides better discrimination for sensory attribute related to fat globule and fat content. The aim of this chapter is to introduce the basic thribology methods for dairy products, summarize the tribological properties of dairy products (milk, yoghurt and cream cheese) and the studies related to the effect of milk fat globule (its size, distribution and population) on the lubrication properties and sensory of the final product

    Fat-Reduced cream cheeses

    No full text
    Cream cheese is a fresh acid coagulated cheese product with soft and spreadable texture, which is acidified by mesophilic lactic acid starter culture. Variants of some of the soft, fresh cheese (e.g., Quark, Cottage cheese, Fromage frais, Bakers cheese, Queso Blanco, and Neufchatel) are also produced from acidification of milk to pH 4.6 which causes the casein to coagulate at their isoelectric point (Fox, Guinee, Cogan, & Mcsweeney, 2017). Regular cream cheese contains a higher percentage of fat, minimum of 33% in the US and 30% in Canada compared to other types of cheese (Phadungath, 2005). Due to high-fat content in cream cheese and the increased consumer awareness of the health risks associated with high dietary fat, the demand for low-fat foods, including cheese, has grown substantially. Although fat reduction may provide consumers with healthier products, the changes in sensory and textural characteristics of low-fat cream cheese, compared to its full-fat counterpart, may influence the consumer’s response

    Use Of Corn Oil In The Production Of Turkish White Cheese

    Get PDF
    The use of corn oil in white cheese production instead of milk fat was investigated and its effects on the quality parameters of cheese were studied. It was demonstrated that the use of corn oil significantly affected the levels of dry matter, fat in dry matter, protein, salt in dry matter and titratable acidity and pH value of samples (p < 0.05). The water-soluble nitrogen based ripening indices of cheeses increased throughout the ripening period. However, there were not large quantitative differences among the peptide profiles of all the cheese samples. The polyunsaturated fatty acids (PUFA), the polyunsaturated to saturated fatty acid ratios (PUFA/SFA) and total cis fatty acid contents were found to be higher whilst the saturated fatty acid and trans fatty acid content were found to be lower than those of the control cheese (p < 0.05). It was found that the use of corn oil instead of milk fat in cheese production decreased the cholesterol content of the cheese samples (p < 0.05). The sensory scores of corn oil cheese were almost similar to the control cheese. The results indicated that corn oil utilization in cheese production has commercial potential in overcoming the defects related to fat reduction.Wo

    Changes in volatile composition, proteolysis and textural and sensory properties of white-brined cheese: effects of ripening temperature and adjunct culture

    No full text
    International audienceThe effects of ripening temperature and adjunct cultures (Lactobacillus helveticus and Lactobacillus casei) on the volatile compounds and sensory and textural properties of white-brined cheese were investigated. Three batches of cheese were produced: cheese A was inoculated with only cheese starter culture (Lactococcus lactis subsp. lactis plus Lactococcus lactis subsp. cremoris), cheese B was inoculated with cheese starter culture plus Lactobacillus helveticus and cheese C was inoculated with cheese starter culture plus Lactobacillus casei. Cheeses were ripened at 6 or 12 °C and analyzed at 30-day intervals up to 120 days of ripening. The use of adjunct culture and ripening temperature significantly influenced the pH and proteolysis of cheeses (P < 0.05). Acids, ketones and alcohols were found at high levels in all three cheeses. Volatiles were significantly influenced by the use of the adjunct cultures, ageing and to some extent ripening temperature (P < 0.05). Textural parameters of the cheeses were significantly affected by the adjunct culture during ripening (P < 0.05). The sensory scores of the cheese samples decreased during the ripening period. An age-related bitterness was detected by the panellists in 90 or 120-day-old cheeses with added adjunct cultures. In conclusion, the use of adjunct culture and ripening at 12 °C enhanced the volatile composition and changed the texture profiles of the cheeses
    corecore