2,323 research outputs found
The Competition of Charge Remote and Charge Directed Fragmentation Mechanisms in Quaternary Ammonium Salt Derivatized Peptides—An Isotopic Exchange Study
Derivatization of peptides as quaternary ammonium salts (QAS) is a promising method for sensitive detection by electrospray ionization tandem mass spectrometry (Cydzik et al. J. Pept. Sci.2011, 17, 445–453). The peptides derivatized by QAS at their N-termini undergo fragmentation according to the two competing mechanisms – charge remote (ChR) and charge directed (ChD). The absence of mobile proton in the quaternary salt ion results in ChR dissociation of a peptide bond. However, Hofmann elimination of quaternary salt creates an ion with one mobile proton leading to the ChD fragmentation. The experiments on the quaternary ammonium salts with deuterated N-alkyl groups or amide NH bonds revealed that QAS derivatized peptides dissociate according to the mixed ChR-ChD mechanism. The isotopic labeling allows differentiation of fragments formed according to ChR and ChD mechanisms
Solar-type dynamo behaviour in fully convective stars without a tachocline
In solar-type stars (with radiative cores and convective envelopes), the
magnetic field powers star spots, flares and other solar phenomena, as well as
chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The
dynamo responsible for generating the field depends on the shearing of internal
magnetic fields by differential rotation. The shearing has long been thought to
take place in a boundary layer known as the tachocline between the radiative
core and the convective envelope. Fully convective stars do not have a
tachocline and their dynamo mechanism is expected to be very different,
although its exact form and physical dependencies are not known. Here we report
observations of four fully convective stars whose X-ray emission correlates
with their rotation periods in the same way as in Sun-like stars. As the X-ray
activity - rotation relationship is a well-established proxy for the behaviour
of the magnetic dynamo, these results imply that fully convective stars also
operate a solar-type dynamo. The lack of a tachocline in fully convective stars
therefore suggests that this is not a critical ingredient in the solar dynamo
and supports models in which the dynamo originates throughout the convection
zone.Comment: 6 pages, 1 figure. Accepted for publication in Nature (28 July 2016).
Author's version, including Method
The RR Lyrae Distance Scale
We review seven methods of measuring the absolute magnitude M_V of RR Lyrae
stars in light of the Hipparcos mission and other recent developments. We focus
on identifying possible systematic errors and rank the methods by relative
immunity to such errors. For the three most robust methods, statistical
parallax, trigonometric parallax, and cluster kinematics, we find M_V (at
[Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods
cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and
theoretical models both yield a broad range of possible values (0.45-0.70 and
0.45-0.65) due to systematic uncertainties in the temperature scale and input
physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but
this may be due to a difference in the metallicity scales of the cluster giants
and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67
+/- 0.13 and is potentially very robust, but at present is too new to be fully
tested for systematics. If the three most robust methods are combined with
Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at
[Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21
pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose
Environmental Factors in the Relapse and Recurrence of Inflammatory Bowel Disease:A Review of the Literature
The causes of relapse in patients with Crohn's disease (CD) and ulcerative colitis (UC) are largely unknown. This paper reviews the epidemiological and clinical data on how medications (non-steroidal anti-inflammatory drugs, estrogens and antibiotics), lifestyle factors (smoking, psychological stress, diet and air pollution) may precipitate clinical relapses and recurrence. Potential biological mechanisms include: increasing thrombotic tendency, imbalances in prostaglandin synthesis, alterations in the composition of gut microbiota, and mucosal damage causing increased permeability
Investigating the Links between Lower Iron Status in Pregnancy and Respiratory Disease in Offspring Using Murine Models.
Maternal iron deficiency occurs in 40-50% of all pregnancies and is associated with an increased risk of respiratory disease and asthma in children. We used murine models to examine the effects of lower iron status during pregnancy on lung function, inflammation and structure, as well as its contribution to increased severity of asthma in the offspring. A low iron diet during pregnancy impairs lung function, increases airway inflammation, and alters lung structure in the absence and presence of experimental asthma. A low iron diet during pregnancy further increases these major disease features in offspring with experimental asthma. Importantly, a low iron diet increases neutrophilic inflammation, which is indicative of more severe disease, in asthma. Together, our data demonstrate that lower dietary iron and systemic deficiency during pregnancy can lead to physiological, immunological and anatomical changes in the lungs and airways of offspring that predispose to greater susceptibility to respiratory disease. These findings suggest that correcting iron deficiency in pregnancy using iron supplements may play an important role in preventing or reducing the severity of respiratory disease in offspring. They also highlight the utility of experimental models for understanding how iron status in pregnancy affects disease outcomes in offspring and provide a means for testing the efficacy of different iron supplements for preventing disease
Orchiectomy as a result of ischemic orchitis after laparoscopic inguinal hernia repair: case report of a rare complication
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Ischemic orchitis is an established complication after open inguinal hernia repair, but ischemic orchitis resulting in orchiectomy after the laparoscopic approach has not been reported. Case presentation: The patient was a thirty-three year-old man who presented with bilateral direct inguinal hernias, right larger than left. He was a thin, muscular male with a narrow pelvis who underwent bilateral extraperitoneal mesh laparoscopic inguinal hernia repair. The case was complicated by pneumoperitoneum which limited the visibility of the pelvic anatomy; however, the mesh was successfully deployed bilaterally. Cautery was used to resect the direct sac on the right. The patient was discharged the same day and doing well with minimal pain and swelling until the fourth day after surgery. That night he presented with sudden-onset pain and swelling of his right testicle and denied both trauma to the area and any sexual activity. Ultrasound of the testicle revealed no blood flow to the testicle which required exploration and subsequent orchiectomy. Conclusion: Ischemic orchitis typically presents 2–3 days after inguinal hernia surgery and can progress to infarction. This ischemic injury is likely due to thrombosis of the venous plexus, rathe
Impact of Circulating Cholesterol Levels on Growth and Intratumoral Androgen Concentration of Prostate Tumors
Prostate cancer (PCa) is the second most common cancer in men. Androgen deprivation therapy (ADT) leads to tumor involution and reduction of tumor burden. However, tumors eventually reemerge that have overcome the absence of gonadal androgens, termed castration resistant PCa (CRPC). Theories underlying the development of CRPC include androgen receptor (AR) mutation allowing for promiscuous activation by non-androgens, AR amplification and overexpression leading to hypersensitivity to low androgen levels, and/or tumoral uptake and conversion of adrenally derived androgens. More recently it has been proposed that prostate tumor cells synthesize their own androgens through de novo steroidogenesis, which involves the step-wise synthesis of androgens from cholesterol. Using the in vivo LNCaP PCa xenograft model, previous data from our group demonstrated that a hypercholesterolemia diet potentiates prostatic tumor growth via induction of angiogenesis. Using this same model we now demonstrate that circulating cholesterol levels are significantly associated with tumor size (R = 0.3957, p = 0.0049) and intratumoral levels of testosterone (R = 0.41, p = 0.0023) in LNCaP tumors grown in hormonally intact mice. We demonstrate tumoral expression of cholesterol uptake genes as well as the spectrum of steroidogenic enzymes necessary for androgen biosynthesis from cholesterol. Moreover, we show that circulating cholesterol levels are directly correlated with tumoral expression of CYP17A, the critical enzyme required for de novo synthesis of androgens from cholesterol (R = 0.4073, p = 0.025) Since hypercholesterolemia does not raise circulating androgen levels and the adrenal gland of the mouse synthesizes minimal androgens, this study provides evidence that hypercholesterolemia increases intratumoral de novo steroidogenesis. Our results are consistent with the hypothesis that cholesterol-fueled intratumoral androgen synthesis may accelerate the growth of prostate tumors, and suggest that treatment of CRPC may be optimized by inclusion of cholesterol reduction therapies in conjunction with therapies targeting androgen synthesis and the AR
Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control
DNA replication stress is a source of genomic instability. Here we identify ​changed mutation rate 1 (​Cmr1) as a factor involved in the response to DNA replication stress in Saccharomyces cerevisiae and show that ​Cmr1—together with ​Mrc1/​Claspin, ​Pph3, the chaperonin containing ​TCP1 (CCT) and 25 other proteins—define a novel intranuclear quality control compartment (INQ) that sequesters misfolded, ubiquitylated and sumoylated proteins in response to genotoxic stress. The diversity of proteins that localize to INQ indicates that other biological processes such as cell cycle progression, chromatin and mitotic spindle organization may also be regulated through INQ. Similar to ​Cmr1, its human orthologue ​WDR76 responds to proteasome inhibition and DNA damage by relocalizing to nuclear foci and physically associating with CCT, suggesting an evolutionarily conserved biological function. We propose that ​Cmr1/​WDR76 plays a role in the recovery from genotoxic stress through regulation of the turnover of sumoylated and phosphorylated proteins
- …